Solve for t
t=\frac{4\sqrt{10}-28}{13}\approx -1.180837643
t=\frac{-4\sqrt{10}-28}{13}\approx -3.126854665
Share
Copied to clipboard
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\sqrt{3}}{2}t+\sqrt{3}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\frac{1}{2}t\right)^{2}.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\sqrt{3}t}{2}+\sqrt{3}\right)^{2}=4
Express \frac{\sqrt{3}}{2}t as a single fraction.
4+2t+\frac{1}{4}t^{2}+4\left(\left(\frac{\sqrt{3}t}{2}\right)^{2}+2\times \frac{\sqrt{3}t}{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{\sqrt{3}t}{2}+\sqrt{3}\right)^{2}.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+2\times \frac{\sqrt{3}t}{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
To raise \frac{\sqrt{3}t}{2} to a power, raise both numerator and denominator to the power and then divide.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\frac{2\sqrt{3}t}{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
Express 2\times \frac{\sqrt{3}t}{2} as a single fraction.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\sqrt{3}t\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
Cancel out 2 and 2.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\sqrt{3}t\sqrt{3}+3\right)=4
The square of \sqrt{3} is 3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+4\sqrt{3}t\sqrt{3}+12=4
Use the distributive property to multiply 4 by \frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\sqrt{3}t\sqrt{3}+3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+4\times 3t+12=4
Multiply \sqrt{3} and \sqrt{3} to get 3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{\left(\sqrt{3}\right)^{2}t^{2}}{2^{2}}+4\times 3t+12=4
Expand \left(\sqrt{3}t\right)^{2}.
4+2t+\frac{1}{4}t^{2}+4\times \frac{3t^{2}}{2^{2}}+4\times 3t+12=4
The square of \sqrt{3} is 3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{3t^{2}}{4}+4\times 3t+12=4
Calculate 2 to the power of 2 and get 4.
4+2t+\frac{1}{4}t^{2}+\frac{4\times 3t^{2}}{4}+4\times 3t+12=4
Express 4\times \frac{3t^{2}}{4} as a single fraction.
4+2t+\frac{1}{4}t^{2}+3t^{2}+4\times 3t+12=4
Cancel out 4 and 4.
4+2t+\frac{1}{4}t^{2}+3t^{2}+12t+12=4
Multiply 4 and 3 to get 12.
4+2t+\frac{13}{4}t^{2}+12t+12=4
Combine \frac{1}{4}t^{2} and 3t^{2} to get \frac{13}{4}t^{2}.
4+14t+\frac{13}{4}t^{2}+12=4
Combine 2t and 12t to get 14t.
16+14t+\frac{13}{4}t^{2}=4
Add 4 and 12 to get 16.
16+14t+\frac{13}{4}t^{2}-4=0
Subtract 4 from both sides.
12+14t+\frac{13}{4}t^{2}=0
Subtract 4 from 16 to get 12.
\frac{13}{4}t^{2}+14t+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-14±\sqrt{14^{2}-4\times \frac{13}{4}\times 12}}{2\times \frac{13}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{13}{4} for a, 14 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-14±\sqrt{196-4\times \frac{13}{4}\times 12}}{2\times \frac{13}{4}}
Square 14.
t=\frac{-14±\sqrt{196-13\times 12}}{2\times \frac{13}{4}}
Multiply -4 times \frac{13}{4}.
t=\frac{-14±\sqrt{196-156}}{2\times \frac{13}{4}}
Multiply -13 times 12.
t=\frac{-14±\sqrt{40}}{2\times \frac{13}{4}}
Add 196 to -156.
t=\frac{-14±2\sqrt{10}}{2\times \frac{13}{4}}
Take the square root of 40.
t=\frac{-14±2\sqrt{10}}{\frac{13}{2}}
Multiply 2 times \frac{13}{4}.
t=\frac{2\sqrt{10}-14}{\frac{13}{2}}
Now solve the equation t=\frac{-14±2\sqrt{10}}{\frac{13}{2}} when ± is plus. Add -14 to 2\sqrt{10}.
t=\frac{4\sqrt{10}-28}{13}
Divide -14+2\sqrt{10} by \frac{13}{2} by multiplying -14+2\sqrt{10} by the reciprocal of \frac{13}{2}.
t=\frac{-2\sqrt{10}-14}{\frac{13}{2}}
Now solve the equation t=\frac{-14±2\sqrt{10}}{\frac{13}{2}} when ± is minus. Subtract 2\sqrt{10} from -14.
t=\frac{-4\sqrt{10}-28}{13}
Divide -14-2\sqrt{10} by \frac{13}{2} by multiplying -14-2\sqrt{10} by the reciprocal of \frac{13}{2}.
t=\frac{4\sqrt{10}-28}{13} t=\frac{-4\sqrt{10}-28}{13}
The equation is now solved.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\sqrt{3}}{2}t+\sqrt{3}\right)^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\frac{1}{2}t\right)^{2}.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\sqrt{3}t}{2}+\sqrt{3}\right)^{2}=4
Express \frac{\sqrt{3}}{2}t as a single fraction.
4+2t+\frac{1}{4}t^{2}+4\left(\left(\frac{\sqrt{3}t}{2}\right)^{2}+2\times \frac{\sqrt{3}t}{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{\sqrt{3}t}{2}+\sqrt{3}\right)^{2}.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+2\times \frac{\sqrt{3}t}{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
To raise \frac{\sqrt{3}t}{2} to a power, raise both numerator and denominator to the power and then divide.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\frac{2\sqrt{3}t}{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
Express 2\times \frac{\sqrt{3}t}{2} as a single fraction.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\sqrt{3}t\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)=4
Cancel out 2 and 2.
4+2t+\frac{1}{4}t^{2}+4\left(\frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\sqrt{3}t\sqrt{3}+3\right)=4
The square of \sqrt{3} is 3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+4\sqrt{3}t\sqrt{3}+12=4
Use the distributive property to multiply 4 by \frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+\sqrt{3}t\sqrt{3}+3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{\left(\sqrt{3}t\right)^{2}}{2^{2}}+4\times 3t+12=4
Multiply \sqrt{3} and \sqrt{3} to get 3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{\left(\sqrt{3}\right)^{2}t^{2}}{2^{2}}+4\times 3t+12=4
Expand \left(\sqrt{3}t\right)^{2}.
4+2t+\frac{1}{4}t^{2}+4\times \frac{3t^{2}}{2^{2}}+4\times 3t+12=4
The square of \sqrt{3} is 3.
4+2t+\frac{1}{4}t^{2}+4\times \frac{3t^{2}}{4}+4\times 3t+12=4
Calculate 2 to the power of 2 and get 4.
4+2t+\frac{1}{4}t^{2}+\frac{4\times 3t^{2}}{4}+4\times 3t+12=4
Express 4\times \frac{3t^{2}}{4} as a single fraction.
4+2t+\frac{1}{4}t^{2}+3t^{2}+4\times 3t+12=4
Cancel out 4 and 4.
4+2t+\frac{1}{4}t^{2}+3t^{2}+12t+12=4
Multiply 4 and 3 to get 12.
4+2t+\frac{13}{4}t^{2}+12t+12=4
Combine \frac{1}{4}t^{2} and 3t^{2} to get \frac{13}{4}t^{2}.
4+14t+\frac{13}{4}t^{2}+12=4
Combine 2t and 12t to get 14t.
16+14t+\frac{13}{4}t^{2}=4
Add 4 and 12 to get 16.
14t+\frac{13}{4}t^{2}=4-16
Subtract 16 from both sides.
14t+\frac{13}{4}t^{2}=-12
Subtract 16 from 4 to get -12.
\frac{13}{4}t^{2}+14t=-12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{13}{4}t^{2}+14t}{\frac{13}{4}}=-\frac{12}{\frac{13}{4}}
Divide both sides of the equation by \frac{13}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{14}{\frac{13}{4}}t=-\frac{12}{\frac{13}{4}}
Dividing by \frac{13}{4} undoes the multiplication by \frac{13}{4}.
t^{2}+\frac{56}{13}t=-\frac{12}{\frac{13}{4}}
Divide 14 by \frac{13}{4} by multiplying 14 by the reciprocal of \frac{13}{4}.
t^{2}+\frac{56}{13}t=-\frac{48}{13}
Divide -12 by \frac{13}{4} by multiplying -12 by the reciprocal of \frac{13}{4}.
t^{2}+\frac{56}{13}t+\left(\frac{28}{13}\right)^{2}=-\frac{48}{13}+\left(\frac{28}{13}\right)^{2}
Divide \frac{56}{13}, the coefficient of the x term, by 2 to get \frac{28}{13}. Then add the square of \frac{28}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{56}{13}t+\frac{784}{169}=-\frac{48}{13}+\frac{784}{169}
Square \frac{28}{13} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{56}{13}t+\frac{784}{169}=\frac{160}{169}
Add -\frac{48}{13} to \frac{784}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{28}{13}\right)^{2}=\frac{160}{169}
Factor t^{2}+\frac{56}{13}t+\frac{784}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{28}{13}\right)^{2}}=\sqrt{\frac{160}{169}}
Take the square root of both sides of the equation.
t+\frac{28}{13}=\frac{4\sqrt{10}}{13} t+\frac{28}{13}=-\frac{4\sqrt{10}}{13}
Simplify.
t=\frac{4\sqrt{10}-28}{13} t=\frac{-4\sqrt{10}-28}{13}
Subtract \frac{28}{13} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}