Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
15\left(\frac{2\times 10+1}{10}-x\right)+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Multiply both sides of the equation by 120, the least common multiple of 8,15,3.
15\left(\frac{20+1}{10}-x\right)+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Multiply 2 and 10 to get 20.
15\left(\frac{21}{10}-x\right)+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Add 20 and 1 to get 21.
15\times \frac{21}{10}-15x+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Use the distributive property to multiply 15 by \frac{21}{10}-x.
\frac{15\times 21}{10}-15x+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Express 15\times \frac{21}{10} as a single fraction.
\frac{315}{10}-15x+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Multiply 15 and 21 to get 315.
\frac{63}{2}-15x+8\left(1\times 15+2\right)=40\left(1\times 3+1\right)
Reduce the fraction \frac{315}{10} to lowest terms by extracting and canceling out 5.
\frac{63}{2}-15x+8\left(15+2\right)=40\left(1\times 3+1\right)
Multiply 1 and 15 to get 15.
\frac{63}{2}-15x+8\times 17=40\left(1\times 3+1\right)
Add 15 and 2 to get 17.
\frac{63}{2}-15x+136=40\left(1\times 3+1\right)
Multiply 8 and 17 to get 136.
\frac{63}{2}-15x+\frac{272}{2}=40\left(1\times 3+1\right)
Convert 136 to fraction \frac{272}{2}.
\frac{63+272}{2}-15x=40\left(1\times 3+1\right)
Since \frac{63}{2} and \frac{272}{2} have the same denominator, add them by adding their numerators.
\frac{335}{2}-15x=40\left(1\times 3+1\right)
Add 63 and 272 to get 335.
\frac{335}{2}-15x=40\left(3+1\right)
Multiply 1 and 3 to get 3.
\frac{335}{2}-15x=40\times 4
Add 3 and 1 to get 4.
\frac{335}{2}-15x=160
Multiply 40 and 4 to get 160.
-15x=160-\frac{335}{2}
Subtract \frac{335}{2} from both sides.
-15x=\frac{320}{2}-\frac{335}{2}
Convert 160 to fraction \frac{320}{2}.
-15x=\frac{320-335}{2}
Since \frac{320}{2} and \frac{335}{2} have the same denominator, subtract them by subtracting their numerators.
-15x=-\frac{15}{2}
Subtract 335 from 320 to get -15.
x=\frac{-\frac{15}{2}}{-15}
Divide both sides by -15.
x=\frac{-15}{2\left(-15\right)}
Express \frac{-\frac{15}{2}}{-15} as a single fraction.
x=\frac{1}{2}
Cancel out -15 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}