Solve for w
w = \frac{\sqrt{162449} + 407}{8} \approx 101.256203092
w=\frac{407-\sqrt{162449}}{8}\approx 0.493796908
Share
Copied to clipboard
144w^{2}-90w-81=\left(18w-9\right)\left(800+9\right)
Use the distributive property to multiply 18w+9 by 8w-9 and combine like terms.
144w^{2}-90w-81=\left(18w-9\right)\times 809
Add 800 and 9 to get 809.
144w^{2}-90w-81=14562w-7281
Use the distributive property to multiply 18w-9 by 809.
144w^{2}-90w-81-14562w=-7281
Subtract 14562w from both sides.
144w^{2}-14652w-81=-7281
Combine -90w and -14562w to get -14652w.
144w^{2}-14652w-81+7281=0
Add 7281 to both sides.
144w^{2}-14652w+7200=0
Add -81 and 7281 to get 7200.
w=\frac{-\left(-14652\right)±\sqrt{\left(-14652\right)^{2}-4\times 144\times 7200}}{2\times 144}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 144 for a, -14652 for b, and 7200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-14652\right)±\sqrt{214681104-4\times 144\times 7200}}{2\times 144}
Square -14652.
w=\frac{-\left(-14652\right)±\sqrt{214681104-576\times 7200}}{2\times 144}
Multiply -4 times 144.
w=\frac{-\left(-14652\right)±\sqrt{214681104-4147200}}{2\times 144}
Multiply -576 times 7200.
w=\frac{-\left(-14652\right)±\sqrt{210533904}}{2\times 144}
Add 214681104 to -4147200.
w=\frac{-\left(-14652\right)±36\sqrt{162449}}{2\times 144}
Take the square root of 210533904.
w=\frac{14652±36\sqrt{162449}}{2\times 144}
The opposite of -14652 is 14652.
w=\frac{14652±36\sqrt{162449}}{288}
Multiply 2 times 144.
w=\frac{36\sqrt{162449}+14652}{288}
Now solve the equation w=\frac{14652±36\sqrt{162449}}{288} when ± is plus. Add 14652 to 36\sqrt{162449}.
w=\frac{\sqrt{162449}+407}{8}
Divide 14652+36\sqrt{162449} by 288.
w=\frac{14652-36\sqrt{162449}}{288}
Now solve the equation w=\frac{14652±36\sqrt{162449}}{288} when ± is minus. Subtract 36\sqrt{162449} from 14652.
w=\frac{407-\sqrt{162449}}{8}
Divide 14652-36\sqrt{162449} by 288.
w=\frac{\sqrt{162449}+407}{8} w=\frac{407-\sqrt{162449}}{8}
The equation is now solved.
144w^{2}-90w-81=\left(18w-9\right)\left(800+9\right)
Use the distributive property to multiply 18w+9 by 8w-9 and combine like terms.
144w^{2}-90w-81=\left(18w-9\right)\times 809
Add 800 and 9 to get 809.
144w^{2}-90w-81=14562w-7281
Use the distributive property to multiply 18w-9 by 809.
144w^{2}-90w-81-14562w=-7281
Subtract 14562w from both sides.
144w^{2}-14652w-81=-7281
Combine -90w and -14562w to get -14652w.
144w^{2}-14652w=-7281+81
Add 81 to both sides.
144w^{2}-14652w=-7200
Add -7281 and 81 to get -7200.
\frac{144w^{2}-14652w}{144}=-\frac{7200}{144}
Divide both sides by 144.
w^{2}+\left(-\frac{14652}{144}\right)w=-\frac{7200}{144}
Dividing by 144 undoes the multiplication by 144.
w^{2}-\frac{407}{4}w=-\frac{7200}{144}
Reduce the fraction \frac{-14652}{144} to lowest terms by extracting and canceling out 36.
w^{2}-\frac{407}{4}w=-50
Divide -7200 by 144.
w^{2}-\frac{407}{4}w+\left(-\frac{407}{8}\right)^{2}=-50+\left(-\frac{407}{8}\right)^{2}
Divide -\frac{407}{4}, the coefficient of the x term, by 2 to get -\frac{407}{8}. Then add the square of -\frac{407}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-\frac{407}{4}w+\frac{165649}{64}=-50+\frac{165649}{64}
Square -\frac{407}{8} by squaring both the numerator and the denominator of the fraction.
w^{2}-\frac{407}{4}w+\frac{165649}{64}=\frac{162449}{64}
Add -50 to \frac{165649}{64}.
\left(w-\frac{407}{8}\right)^{2}=\frac{162449}{64}
Factor w^{2}-\frac{407}{4}w+\frac{165649}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{407}{8}\right)^{2}}=\sqrt{\frac{162449}{64}}
Take the square root of both sides of the equation.
w-\frac{407}{8}=\frac{\sqrt{162449}}{8} w-\frac{407}{8}=-\frac{\sqrt{162449}}{8}
Simplify.
w=\frac{\sqrt{162449}+407}{8} w=\frac{407-\sqrt{162449}}{8}
Add \frac{407}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}