Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

324-4\times 9\left(16k^{2}-135\right)=0
Calculate 18 to the power of 2 and get 324.
324-36\left(16k^{2}-135\right)=0
Multiply 4 and 9 to get 36.
324-576k^{2}+4860=0
Use the distributive property to multiply -36 by 16k^{2}-135.
5184-576k^{2}=0
Add 324 and 4860 to get 5184.
-576k^{2}=-5184
Subtract 5184 from both sides. Anything subtracted from zero gives its negation.
k^{2}=\frac{-5184}{-576}
Divide both sides by -576.
k^{2}=9
Divide -5184 by -576 to get 9.
k=3 k=-3
Take the square root of both sides of the equation.
324-4\times 9\left(16k^{2}-135\right)=0
Calculate 18 to the power of 2 and get 324.
324-36\left(16k^{2}-135\right)=0
Multiply 4 and 9 to get 36.
324-576k^{2}+4860=0
Use the distributive property to multiply -36 by 16k^{2}-135.
5184-576k^{2}=0
Add 324 and 4860 to get 5184.
-576k^{2}+5184=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\left(-576\right)\times 5184}}{2\left(-576\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -576 for a, 0 for b, and 5184 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-576\right)\times 5184}}{2\left(-576\right)}
Square 0.
k=\frac{0±\sqrt{2304\times 5184}}{2\left(-576\right)}
Multiply -4 times -576.
k=\frac{0±\sqrt{11943936}}{2\left(-576\right)}
Multiply 2304 times 5184.
k=\frac{0±3456}{2\left(-576\right)}
Take the square root of 11943936.
k=\frac{0±3456}{-1152}
Multiply 2 times -576.
k=-3
Now solve the equation k=\frac{0±3456}{-1152} when ± is plus. Divide 3456 by -1152.
k=3
Now solve the equation k=\frac{0±3456}{-1152} when ± is minus. Divide -3456 by -1152.
k=-3 k=3
The equation is now solved.