Solve for x
x=\frac{14\sqrt{337}}{337}\approx 0.762628595
x=-\frac{14\sqrt{337}}{337}\approx -0.762628595
Graph
Share
Copied to clipboard
16^{2}x^{2}+\left(9x\right)^{2}=14^{2}
Expand \left(16x\right)^{2}.
256x^{2}+\left(9x\right)^{2}=14^{2}
Calculate 16 to the power of 2 and get 256.
256x^{2}+9^{2}x^{2}=14^{2}
Expand \left(9x\right)^{2}.
256x^{2}+81x^{2}=14^{2}
Calculate 9 to the power of 2 and get 81.
337x^{2}=14^{2}
Combine 256x^{2} and 81x^{2} to get 337x^{2}.
337x^{2}=196
Calculate 14 to the power of 2 and get 196.
x^{2}=\frac{196}{337}
Divide both sides by 337.
x=\frac{14\sqrt{337}}{337} x=-\frac{14\sqrt{337}}{337}
Take the square root of both sides of the equation.
16^{2}x^{2}+\left(9x\right)^{2}=14^{2}
Expand \left(16x\right)^{2}.
256x^{2}+\left(9x\right)^{2}=14^{2}
Calculate 16 to the power of 2 and get 256.
256x^{2}+9^{2}x^{2}=14^{2}
Expand \left(9x\right)^{2}.
256x^{2}+81x^{2}=14^{2}
Calculate 9 to the power of 2 and get 81.
337x^{2}=14^{2}
Combine 256x^{2} and 81x^{2} to get 337x^{2}.
337x^{2}=196
Calculate 14 to the power of 2 and get 196.
337x^{2}-196=0
Subtract 196 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 337\left(-196\right)}}{2\times 337}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 337 for a, 0 for b, and -196 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 337\left(-196\right)}}{2\times 337}
Square 0.
x=\frac{0±\sqrt{-1348\left(-196\right)}}{2\times 337}
Multiply -4 times 337.
x=\frac{0±\sqrt{264208}}{2\times 337}
Multiply -1348 times -196.
x=\frac{0±28\sqrt{337}}{2\times 337}
Take the square root of 264208.
x=\frac{0±28\sqrt{337}}{674}
Multiply 2 times 337.
x=\frac{14\sqrt{337}}{337}
Now solve the equation x=\frac{0±28\sqrt{337}}{674} when ± is plus.
x=-\frac{14\sqrt{337}}{337}
Now solve the equation x=\frac{0±28\sqrt{337}}{674} when ± is minus.
x=\frac{14\sqrt{337}}{337} x=-\frac{14\sqrt{337}}{337}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}