Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{16^{-\frac{1}{2}}\left(x^{-4}\right)^{-\frac{1}{2}}}{\left(8x^{6}\right)^{-\frac{1}{3}}}
Expand \left(16x^{-4}\right)^{-\frac{1}{2}}.
\frac{16^{-\frac{1}{2}}x^{2}}{\left(8x^{6}\right)^{-\frac{1}{3}}}
To raise a power to another power, multiply the exponents. Multiply -4 and -\frac{1}{2} to get 2.
\frac{\frac{1}{4}x^{2}}{\left(8x^{6}\right)^{-\frac{1}{3}}}
Calculate 16 to the power of -\frac{1}{2} and get \frac{1}{4}.
\frac{\frac{1}{4}x^{2}}{8^{-\frac{1}{3}}\left(x^{6}\right)^{-\frac{1}{3}}}
Expand \left(8x^{6}\right)^{-\frac{1}{3}}.
\frac{\frac{1}{4}x^{2}}{8^{-\frac{1}{3}}x^{-2}}
To raise a power to another power, multiply the exponents. Multiply 6 and -\frac{1}{3} to get -2.
\frac{\frac{1}{4}x^{2}}{\frac{1}{2}x^{-2}}
Calculate 8 to the power of -\frac{1}{3} and get \frac{1}{2}.
\frac{\frac{1}{4}x^{4}}{\frac{1}{2}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1}{4}x^{4}\times 2
Divide \frac{1}{4}x^{4} by \frac{1}{2} by multiplying \frac{1}{4}x^{4} by the reciprocal of \frac{1}{2}.
\frac{1}{2}x^{4}
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16^{-\frac{1}{2}}\left(x^{-4}\right)^{-\frac{1}{2}}}{\left(8x^{6}\right)^{-\frac{1}{3}}})
Expand \left(16x^{-4}\right)^{-\frac{1}{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16^{-\frac{1}{2}}x^{2}}{\left(8x^{6}\right)^{-\frac{1}{3}}})
To raise a power to another power, multiply the exponents. Multiply -4 and -\frac{1}{2} to get 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}x^{2}}{\left(8x^{6}\right)^{-\frac{1}{3}}})
Calculate 16 to the power of -\frac{1}{2} and get \frac{1}{4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}x^{2}}{8^{-\frac{1}{3}}\left(x^{6}\right)^{-\frac{1}{3}}})
Expand \left(8x^{6}\right)^{-\frac{1}{3}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}x^{2}}{8^{-\frac{1}{3}}x^{-2}})
To raise a power to another power, multiply the exponents. Multiply 6 and -\frac{1}{3} to get -2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}x^{2}}{\frac{1}{2}x^{-2}})
Calculate 8 to the power of -\frac{1}{3} and get \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{4}x^{4}}{\frac{1}{2}})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{4}x^{4}\times 2)
Divide \frac{1}{4}x^{4} by \frac{1}{2} by multiplying \frac{1}{4}x^{4} by the reciprocal of \frac{1}{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}x^{4})
Multiply \frac{1}{4} and 2 to get \frac{1}{2}.
4\times \frac{1}{2}x^{4-1}
The derivative of ax^{n} is nax^{n-1}.
2x^{4-1}
Multiply 4 times \frac{1}{2}.
2x^{3}
Subtract 1 from 4.