Solve for x (complex solution)
x=-2\sqrt{14}i+8\approx 8-7.483314774i
x=8+2\sqrt{14}i\approx 8+7.483314774i
Graph
Share
Copied to clipboard
16x-x^{2}=120
Use the distributive property to multiply 16-x by x.
16x-x^{2}-120=0
Subtract 120 from both sides.
-x^{2}+16x-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-120\right)}}{2\left(-1\right)}
Square 16.
x=\frac{-16±\sqrt{256+4\left(-120\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-16±\sqrt{256-480}}{2\left(-1\right)}
Multiply 4 times -120.
x=\frac{-16±\sqrt{-224}}{2\left(-1\right)}
Add 256 to -480.
x=\frac{-16±4\sqrt{14}i}{2\left(-1\right)}
Take the square root of -224.
x=\frac{-16±4\sqrt{14}i}{-2}
Multiply 2 times -1.
x=\frac{-16+4\sqrt{14}i}{-2}
Now solve the equation x=\frac{-16±4\sqrt{14}i}{-2} when ± is plus. Add -16 to 4i\sqrt{14}.
x=-2\sqrt{14}i+8
Divide -16+4i\sqrt{14} by -2.
x=\frac{-4\sqrt{14}i-16}{-2}
Now solve the equation x=\frac{-16±4\sqrt{14}i}{-2} when ± is minus. Subtract 4i\sqrt{14} from -16.
x=8+2\sqrt{14}i
Divide -16-4i\sqrt{14} by -2.
x=-2\sqrt{14}i+8 x=8+2\sqrt{14}i
The equation is now solved.
16x-x^{2}=120
Use the distributive property to multiply 16-x by x.
-x^{2}+16x=120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+16x}{-1}=\frac{120}{-1}
Divide both sides by -1.
x^{2}+\frac{16}{-1}x=\frac{120}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-16x=\frac{120}{-1}
Divide 16 by -1.
x^{2}-16x=-120
Divide 120 by -1.
x^{2}-16x+\left(-8\right)^{2}=-120+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-120+64
Square -8.
x^{2}-16x+64=-56
Add -120 to 64.
\left(x-8\right)^{2}=-56
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{-56}
Take the square root of both sides of the equation.
x-8=2\sqrt{14}i x-8=-2\sqrt{14}i
Simplify.
x=8+2\sqrt{14}i x=-2\sqrt{14}i+8
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}