Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

144-25x+x^{2}=112
Use the distributive property to multiply 16-x by 9-x and combine like terms.
144-25x+x^{2}-112=0
Subtract 112 from both sides.
32-25x+x^{2}=0
Subtract 112 from 144 to get 32.
x^{2}-25x+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 32}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -25 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 32}}{2}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-128}}{2}
Multiply -4 times 32.
x=\frac{-\left(-25\right)±\sqrt{497}}{2}
Add 625 to -128.
x=\frac{25±\sqrt{497}}{2}
The opposite of -25 is 25.
x=\frac{\sqrt{497}+25}{2}
Now solve the equation x=\frac{25±\sqrt{497}}{2} when ± is plus. Add 25 to \sqrt{497}.
x=\frac{25-\sqrt{497}}{2}
Now solve the equation x=\frac{25±\sqrt{497}}{2} when ± is minus. Subtract \sqrt{497} from 25.
x=\frac{\sqrt{497}+25}{2} x=\frac{25-\sqrt{497}}{2}
The equation is now solved.
144-25x+x^{2}=112
Use the distributive property to multiply 16-x by 9-x and combine like terms.
-25x+x^{2}=112-144
Subtract 144 from both sides.
-25x+x^{2}=-32
Subtract 144 from 112 to get -32.
x^{2}-25x=-32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=-32+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-25x+\frac{625}{4}=-32+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-25x+\frac{625}{4}=\frac{497}{4}
Add -32 to \frac{625}{4}.
\left(x-\frac{25}{2}\right)^{2}=\frac{497}{4}
Factor x^{2}-25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{497}{4}}
Take the square root of both sides of the equation.
x-\frac{25}{2}=\frac{\sqrt{497}}{2} x-\frac{25}{2}=-\frac{\sqrt{497}}{2}
Simplify.
x=\frac{\sqrt{497}+25}{2} x=\frac{25-\sqrt{497}}{2}
Add \frac{25}{2} to both sides of the equation.