Solve for x
x = \frac{57}{8} = 7\frac{1}{8} = 7.125
Graph
Share
Copied to clipboard
256-32x+x^{2}+6^{2}=8^{2}+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-x\right)^{2}.
256-32x+x^{2}+36=8^{2}+x^{2}
Calculate 6 to the power of 2 and get 36.
292-32x+x^{2}=8^{2}+x^{2}
Add 256 and 36 to get 292.
292-32x+x^{2}=64+x^{2}
Calculate 8 to the power of 2 and get 64.
292-32x+x^{2}-x^{2}=64
Subtract x^{2} from both sides.
292-32x=64
Combine x^{2} and -x^{2} to get 0.
-32x=64-292
Subtract 292 from both sides.
-32x=-228
Subtract 292 from 64 to get -228.
x=\frac{-228}{-32}
Divide both sides by -32.
x=\frac{57}{8}
Reduce the fraction \frac{-228}{-32} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}