Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

256-160t+25t^{2}+6^{2}=10^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-5t\right)^{2}.
256-160t+25t^{2}+36=10^{2}
Calculate 6 to the power of 2 and get 36.
292-160t+25t^{2}=10^{2}
Add 256 and 36 to get 292.
292-160t+25t^{2}=100
Calculate 10 to the power of 2 and get 100.
292-160t+25t^{2}-100=0
Subtract 100 from both sides.
192-160t+25t^{2}=0
Subtract 100 from 292 to get 192.
25t^{2}-160t+192=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-160\right)±\sqrt{\left(-160\right)^{2}-4\times 25\times 192}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -160 for b, and 192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-160\right)±\sqrt{25600-4\times 25\times 192}}{2\times 25}
Square -160.
t=\frac{-\left(-160\right)±\sqrt{25600-100\times 192}}{2\times 25}
Multiply -4 times 25.
t=\frac{-\left(-160\right)±\sqrt{25600-19200}}{2\times 25}
Multiply -100 times 192.
t=\frac{-\left(-160\right)±\sqrt{6400}}{2\times 25}
Add 25600 to -19200.
t=\frac{-\left(-160\right)±80}{2\times 25}
Take the square root of 6400.
t=\frac{160±80}{2\times 25}
The opposite of -160 is 160.
t=\frac{160±80}{50}
Multiply 2 times 25.
t=\frac{240}{50}
Now solve the equation t=\frac{160±80}{50} when ± is plus. Add 160 to 80.
t=\frac{24}{5}
Reduce the fraction \frac{240}{50} to lowest terms by extracting and canceling out 10.
t=\frac{80}{50}
Now solve the equation t=\frac{160±80}{50} when ± is minus. Subtract 80 from 160.
t=\frac{8}{5}
Reduce the fraction \frac{80}{50} to lowest terms by extracting and canceling out 10.
t=\frac{24}{5} t=\frac{8}{5}
The equation is now solved.
256-160t+25t^{2}+6^{2}=10^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-5t\right)^{2}.
256-160t+25t^{2}+36=10^{2}
Calculate 6 to the power of 2 and get 36.
292-160t+25t^{2}=10^{2}
Add 256 and 36 to get 292.
292-160t+25t^{2}=100
Calculate 10 to the power of 2 and get 100.
-160t+25t^{2}=100-292
Subtract 292 from both sides.
-160t+25t^{2}=-192
Subtract 292 from 100 to get -192.
25t^{2}-160t=-192
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25t^{2}-160t}{25}=-\frac{192}{25}
Divide both sides by 25.
t^{2}+\left(-\frac{160}{25}\right)t=-\frac{192}{25}
Dividing by 25 undoes the multiplication by 25.
t^{2}-\frac{32}{5}t=-\frac{192}{25}
Reduce the fraction \frac{-160}{25} to lowest terms by extracting and canceling out 5.
t^{2}-\frac{32}{5}t+\left(-\frac{16}{5}\right)^{2}=-\frac{192}{25}+\left(-\frac{16}{5}\right)^{2}
Divide -\frac{32}{5}, the coefficient of the x term, by 2 to get -\frac{16}{5}. Then add the square of -\frac{16}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{32}{5}t+\frac{256}{25}=\frac{-192+256}{25}
Square -\frac{16}{5} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{32}{5}t+\frac{256}{25}=\frac{64}{25}
Add -\frac{192}{25} to \frac{256}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{16}{5}\right)^{2}=\frac{64}{25}
Factor t^{2}-\frac{32}{5}t+\frac{256}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{16}{5}\right)^{2}}=\sqrt{\frac{64}{25}}
Take the square root of both sides of the equation.
t-\frac{16}{5}=\frac{8}{5} t-\frac{16}{5}=-\frac{8}{5}
Simplify.
t=\frac{24}{5} t=\frac{8}{5}
Add \frac{16}{5} to both sides of the equation.