Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. k
Tick mark Image

Similar Problems from Web Search

Share

144^{\frac{1}{2}}\left(k^{\frac{4}{11}}\right)^{\frac{1}{2}}k^{\frac{-5}{22}}
Expand \left(144k^{\frac{4}{11}}\right)^{\frac{1}{2}}.
144^{\frac{1}{2}}k^{\frac{2}{11}}k^{\frac{-5}{22}}
To raise a power to another power, multiply the exponents. Multiply \frac{4}{11} and \frac{1}{2} to get \frac{2}{11}.
12k^{\frac{2}{11}}k^{\frac{-5}{22}}
Calculate 144 to the power of \frac{1}{2} and get 12.
12k^{\frac{2}{11}}k^{-\frac{5}{22}}
Fraction \frac{-5}{22} can be rewritten as -\frac{5}{22} by extracting the negative sign.
12k^{-\frac{1}{22}}
To multiply powers of the same base, add their exponents. Add \frac{2}{11} and -\frac{5}{22} to get -\frac{1}{22}.
\frac{\mathrm{d}}{\mathrm{d}k}(144^{\frac{1}{2}}\left(k^{\frac{4}{11}}\right)^{\frac{1}{2}}k^{\frac{-5}{22}})
Expand \left(144k^{\frac{4}{11}}\right)^{\frac{1}{2}}.
\frac{\mathrm{d}}{\mathrm{d}k}(144^{\frac{1}{2}}k^{\frac{2}{11}}k^{\frac{-5}{22}})
To raise a power to another power, multiply the exponents. Multiply \frac{4}{11} and \frac{1}{2} to get \frac{2}{11}.
\frac{\mathrm{d}}{\mathrm{d}k}(12k^{\frac{2}{11}}k^{\frac{-5}{22}})
Calculate 144 to the power of \frac{1}{2} and get 12.
\frac{\mathrm{d}}{\mathrm{d}k}(12k^{\frac{2}{11}}k^{-\frac{5}{22}})
Fraction \frac{-5}{22} can be rewritten as -\frac{5}{22} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}k}(12k^{-\frac{1}{22}})
To multiply powers of the same base, add their exponents. Add \frac{2}{11} and -\frac{5}{22} to get -\frac{1}{22}.
-\frac{1}{22}\times 12k^{-\frac{1}{22}-1}
The derivative of ax^{n} is nax^{n-1}.
-\frac{6}{11}k^{-\frac{1}{22}-1}
Multiply -\frac{1}{22} times 12.
-\frac{6}{11}k^{-\frac{23}{22}}
Subtract 1 from -\frac{1}{22}.