Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

17689-266x+x^{2}=12x\left(133-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(133-x\right)^{2}.
17689-266x+x^{2}=1596x-12x^{2}
Use the distributive property to multiply 12x by 133-x.
17689-266x+x^{2}-1596x=-12x^{2}
Subtract 1596x from both sides.
17689-1862x+x^{2}=-12x^{2}
Combine -266x and -1596x to get -1862x.
17689-1862x+x^{2}+12x^{2}=0
Add 12x^{2} to both sides.
17689-1862x+13x^{2}=0
Combine x^{2} and 12x^{2} to get 13x^{2}.
13x^{2}-1862x+17689=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1862\right)±\sqrt{\left(-1862\right)^{2}-4\times 13\times 17689}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -1862 for b, and 17689 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1862\right)±\sqrt{3467044-4\times 13\times 17689}}{2\times 13}
Square -1862.
x=\frac{-\left(-1862\right)±\sqrt{3467044-52\times 17689}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-1862\right)±\sqrt{3467044-919828}}{2\times 13}
Multiply -52 times 17689.
x=\frac{-\left(-1862\right)±\sqrt{2547216}}{2\times 13}
Add 3467044 to -919828.
x=\frac{-\left(-1862\right)±1596}{2\times 13}
Take the square root of 2547216.
x=\frac{1862±1596}{2\times 13}
The opposite of -1862 is 1862.
x=\frac{1862±1596}{26}
Multiply 2 times 13.
x=\frac{3458}{26}
Now solve the equation x=\frac{1862±1596}{26} when ± is plus. Add 1862 to 1596.
x=133
Divide 3458 by 26.
x=\frac{266}{26}
Now solve the equation x=\frac{1862±1596}{26} when ± is minus. Subtract 1596 from 1862.
x=\frac{133}{13}
Reduce the fraction \frac{266}{26} to lowest terms by extracting and canceling out 2.
x=133 x=\frac{133}{13}
The equation is now solved.
17689-266x+x^{2}=12x\left(133-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(133-x\right)^{2}.
17689-266x+x^{2}=1596x-12x^{2}
Use the distributive property to multiply 12x by 133-x.
17689-266x+x^{2}-1596x=-12x^{2}
Subtract 1596x from both sides.
17689-1862x+x^{2}=-12x^{2}
Combine -266x and -1596x to get -1862x.
17689-1862x+x^{2}+12x^{2}=0
Add 12x^{2} to both sides.
17689-1862x+13x^{2}=0
Combine x^{2} and 12x^{2} to get 13x^{2}.
-1862x+13x^{2}=-17689
Subtract 17689 from both sides. Anything subtracted from zero gives its negation.
13x^{2}-1862x=-17689
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{13x^{2}-1862x}{13}=-\frac{17689}{13}
Divide both sides by 13.
x^{2}-\frac{1862}{13}x=-\frac{17689}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{1862}{13}x+\left(-\frac{931}{13}\right)^{2}=-\frac{17689}{13}+\left(-\frac{931}{13}\right)^{2}
Divide -\frac{1862}{13}, the coefficient of the x term, by 2 to get -\frac{931}{13}. Then add the square of -\frac{931}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1862}{13}x+\frac{866761}{169}=-\frac{17689}{13}+\frac{866761}{169}
Square -\frac{931}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1862}{13}x+\frac{866761}{169}=\frac{636804}{169}
Add -\frac{17689}{13} to \frac{866761}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{931}{13}\right)^{2}=\frac{636804}{169}
Factor x^{2}-\frac{1862}{13}x+\frac{866761}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{931}{13}\right)^{2}}=\sqrt{\frac{636804}{169}}
Take the square root of both sides of the equation.
x-\frac{931}{13}=\frac{798}{13} x-\frac{931}{13}=-\frac{798}{13}
Simplify.
x=133 x=\frac{133}{13}
Add \frac{931}{13} to both sides of the equation.