Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(169-a^{2}\right)\left(a^{2}-3^{2}\right)=5000
Calculate 13 to the power of 2 and get 169.
\left(169-a^{2}\right)\left(a^{2}-9\right)=5000
Calculate 3 to the power of 2 and get 9.
178a^{2}-1521-a^{4}=5000
Use the distributive property to multiply 169-a^{2} by a^{2}-9 and combine like terms.
178a^{2}-1521-a^{4}-5000=0
Subtract 5000 from both sides.
178a^{2}-6521-a^{4}=0
Subtract 5000 from -1521 to get -6521.
-t^{2}+178t-6521=0
Substitute t for a^{2}.
t=\frac{-178±\sqrt{178^{2}-4\left(-1\right)\left(-6521\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 178 for b, and -6521 for c in the quadratic formula.
t=\frac{-178±20\sqrt{14}}{-2}
Do the calculations.
t=89-10\sqrt{14} t=10\sqrt{14}+89
Solve the equation t=\frac{-178±20\sqrt{14}}{-2} when ± is plus and when ± is minus.
a=\sqrt{89-10\sqrt{14}} a=-\sqrt{89-10\sqrt{14}} a=\sqrt{10\sqrt{14}+89} a=-\sqrt{10\sqrt{14}+89}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.