Solve for a
a=-\sqrt{89-10\sqrt{14}}\approx -7.182160269
a=\sqrt{89-10\sqrt{14}}\approx 7.182160269
a=\sqrt{10\sqrt{14}+89}\approx 11.243512524
a=-\sqrt{10\sqrt{14}+89}\approx -11.243512524
Quiz
Quadratic Equation
5 problems similar to:
( 13 ^ { 2 } - a ^ { 2 } ) ( a ^ { 2 } - 3 ^ { 2 } ) = 5000
Share
Copied to clipboard
\left(169-a^{2}\right)\left(a^{2}-3^{2}\right)=5000
Calculate 13 to the power of 2 and get 169.
\left(169-a^{2}\right)\left(a^{2}-9\right)=5000
Calculate 3 to the power of 2 and get 9.
178a^{2}-1521-a^{4}=5000
Use the distributive property to multiply 169-a^{2} by a^{2}-9 and combine like terms.
178a^{2}-1521-a^{4}-5000=0
Subtract 5000 from both sides.
178a^{2}-6521-a^{4}=0
Subtract 5000 from -1521 to get -6521.
-t^{2}+178t-6521=0
Substitute t for a^{2}.
t=\frac{-178±\sqrt{178^{2}-4\left(-1\right)\left(-6521\right)}}{-2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -1 for a, 178 for b, and -6521 for c in the quadratic formula.
t=\frac{-178±20\sqrt{14}}{-2}
Do the calculations.
t=89-10\sqrt{14} t=10\sqrt{14}+89
Solve the equation t=\frac{-178±20\sqrt{14}}{-2} when ± is plus and when ± is minus.
a=\sqrt{89-10\sqrt{14}} a=-\sqrt{89-10\sqrt{14}} a=\sqrt{10\sqrt{14}+89} a=-\sqrt{10\sqrt{14}+89}
Since a=t^{2}, the solutions are obtained by evaluating a=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}