Solve for x
x = \frac{2461 - \sqrt{2001}}{2} \approx 1208.133730754
x = \frac{\sqrt{2001} + 2461}{2} \approx 1252.866269246
Graph
Share
Copied to clipboard
1514130-2461x+x^{2}=500
Use the distributive property to multiply 1230-x by 1231-x and combine like terms.
1514130-2461x+x^{2}-500=0
Subtract 500 from both sides.
1513630-2461x+x^{2}=0
Subtract 500 from 1514130 to get 1513630.
x^{2}-2461x+1513630=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2461\right)±\sqrt{\left(-2461\right)^{2}-4\times 1513630}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2461 for b, and 1513630 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2461\right)±\sqrt{6056521-4\times 1513630}}{2}
Square -2461.
x=\frac{-\left(-2461\right)±\sqrt{6056521-6054520}}{2}
Multiply -4 times 1513630.
x=\frac{-\left(-2461\right)±\sqrt{2001}}{2}
Add 6056521 to -6054520.
x=\frac{2461±\sqrt{2001}}{2}
The opposite of -2461 is 2461.
x=\frac{\sqrt{2001}+2461}{2}
Now solve the equation x=\frac{2461±\sqrt{2001}}{2} when ± is plus. Add 2461 to \sqrt{2001}.
x=\frac{2461-\sqrt{2001}}{2}
Now solve the equation x=\frac{2461±\sqrt{2001}}{2} when ± is minus. Subtract \sqrt{2001} from 2461.
x=\frac{\sqrt{2001}+2461}{2} x=\frac{2461-\sqrt{2001}}{2}
The equation is now solved.
1514130-2461x+x^{2}=500
Use the distributive property to multiply 1230-x by 1231-x and combine like terms.
-2461x+x^{2}=500-1514130
Subtract 1514130 from both sides.
-2461x+x^{2}=-1513630
Subtract 1514130 from 500 to get -1513630.
x^{2}-2461x=-1513630
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2461x+\left(-\frac{2461}{2}\right)^{2}=-1513630+\left(-\frac{2461}{2}\right)^{2}
Divide -2461, the coefficient of the x term, by 2 to get -\frac{2461}{2}. Then add the square of -\frac{2461}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2461x+\frac{6056521}{4}=-1513630+\frac{6056521}{4}
Square -\frac{2461}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-2461x+\frac{6056521}{4}=\frac{2001}{4}
Add -1513630 to \frac{6056521}{4}.
\left(x-\frac{2461}{2}\right)^{2}=\frac{2001}{4}
Factor x^{2}-2461x+\frac{6056521}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2461}{2}\right)^{2}}=\sqrt{\frac{2001}{4}}
Take the square root of both sides of the equation.
x-\frac{2461}{2}=\frac{\sqrt{2001}}{2} x-\frac{2461}{2}=-\frac{\sqrt{2001}}{2}
Simplify.
x=\frac{\sqrt{2001}+2461}{2} x=\frac{2461-\sqrt{2001}}{2}
Add \frac{2461}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}