Solve for x
x=\frac{\sqrt{34165}}{10}+\frac{13}{2}\approx 24.98377667
x=-\frac{\sqrt{34165}}{10}+\frac{13}{2}\approx -11.98377667
Graph
Share
Copied to clipboard
6000+260x-20x^{2}=12
Use the distributive property to multiply 120+10x by 50-2x and combine like terms.
6000+260x-20x^{2}-12=0
Subtract 12 from both sides.
5988+260x-20x^{2}=0
Subtract 12 from 6000 to get 5988.
-20x^{2}+260x+5988=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-260±\sqrt{260^{2}-4\left(-20\right)\times 5988}}{2\left(-20\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -20 for a, 260 for b, and 5988 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-260±\sqrt{67600-4\left(-20\right)\times 5988}}{2\left(-20\right)}
Square 260.
x=\frac{-260±\sqrt{67600+80\times 5988}}{2\left(-20\right)}
Multiply -4 times -20.
x=\frac{-260±\sqrt{67600+479040}}{2\left(-20\right)}
Multiply 80 times 5988.
x=\frac{-260±\sqrt{546640}}{2\left(-20\right)}
Add 67600 to 479040.
x=\frac{-260±4\sqrt{34165}}{2\left(-20\right)}
Take the square root of 546640.
x=\frac{-260±4\sqrt{34165}}{-40}
Multiply 2 times -20.
x=\frac{4\sqrt{34165}-260}{-40}
Now solve the equation x=\frac{-260±4\sqrt{34165}}{-40} when ± is plus. Add -260 to 4\sqrt{34165}.
x=-\frac{\sqrt{34165}}{10}+\frac{13}{2}
Divide -260+4\sqrt{34165} by -40.
x=\frac{-4\sqrt{34165}-260}{-40}
Now solve the equation x=\frac{-260±4\sqrt{34165}}{-40} when ± is minus. Subtract 4\sqrt{34165} from -260.
x=\frac{\sqrt{34165}}{10}+\frac{13}{2}
Divide -260-4\sqrt{34165} by -40.
x=-\frac{\sqrt{34165}}{10}+\frac{13}{2} x=\frac{\sqrt{34165}}{10}+\frac{13}{2}
The equation is now solved.
6000+260x-20x^{2}=12
Use the distributive property to multiply 120+10x by 50-2x and combine like terms.
260x-20x^{2}=12-6000
Subtract 6000 from both sides.
260x-20x^{2}=-5988
Subtract 6000 from 12 to get -5988.
-20x^{2}+260x=-5988
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-20x^{2}+260x}{-20}=-\frac{5988}{-20}
Divide both sides by -20.
x^{2}+\frac{260}{-20}x=-\frac{5988}{-20}
Dividing by -20 undoes the multiplication by -20.
x^{2}-13x=-\frac{5988}{-20}
Divide 260 by -20.
x^{2}-13x=\frac{1497}{5}
Reduce the fraction \frac{-5988}{-20} to lowest terms by extracting and canceling out 4.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=\frac{1497}{5}+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=\frac{1497}{5}+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{6833}{20}
Add \frac{1497}{5} to \frac{169}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{2}\right)^{2}=\frac{6833}{20}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{6833}{20}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{\sqrt{34165}}{10} x-\frac{13}{2}=-\frac{\sqrt{34165}}{10}
Simplify.
x=\frac{\sqrt{34165}}{10}+\frac{13}{2} x=-\frac{\sqrt{34165}}{10}+\frac{13}{2}
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}