Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

144x^{2}-168x+49=\left(2x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12x-7\right)^{2}.
144x^{2}-168x+49=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
144x^{2}-168x+49-4x^{2}=12x+9
Subtract 4x^{2} from both sides.
140x^{2}-168x+49=12x+9
Combine 144x^{2} and -4x^{2} to get 140x^{2}.
140x^{2}-168x+49-12x=9
Subtract 12x from both sides.
140x^{2}-180x+49=9
Combine -168x and -12x to get -180x.
140x^{2}-180x+49-9=0
Subtract 9 from both sides.
140x^{2}-180x+40=0
Subtract 9 from 49 to get 40.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 140\times 40}}{2\times 140}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 140 for a, -180 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 140\times 40}}{2\times 140}
Square -180.
x=\frac{-\left(-180\right)±\sqrt{32400-560\times 40}}{2\times 140}
Multiply -4 times 140.
x=\frac{-\left(-180\right)±\sqrt{32400-22400}}{2\times 140}
Multiply -560 times 40.
x=\frac{-\left(-180\right)±\sqrt{10000}}{2\times 140}
Add 32400 to -22400.
x=\frac{-\left(-180\right)±100}{2\times 140}
Take the square root of 10000.
x=\frac{180±100}{2\times 140}
The opposite of -180 is 180.
x=\frac{180±100}{280}
Multiply 2 times 140.
x=\frac{280}{280}
Now solve the equation x=\frac{180±100}{280} when ± is plus. Add 180 to 100.
x=1
Divide 280 by 280.
x=\frac{80}{280}
Now solve the equation x=\frac{180±100}{280} when ± is minus. Subtract 100 from 180.
x=\frac{2}{7}
Reduce the fraction \frac{80}{280} to lowest terms by extracting and canceling out 40.
x=1 x=\frac{2}{7}
The equation is now solved.
144x^{2}-168x+49=\left(2x+3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12x-7\right)^{2}.
144x^{2}-168x+49=4x^{2}+12x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
144x^{2}-168x+49-4x^{2}=12x+9
Subtract 4x^{2} from both sides.
140x^{2}-168x+49=12x+9
Combine 144x^{2} and -4x^{2} to get 140x^{2}.
140x^{2}-168x+49-12x=9
Subtract 12x from both sides.
140x^{2}-180x+49=9
Combine -168x and -12x to get -180x.
140x^{2}-180x=9-49
Subtract 49 from both sides.
140x^{2}-180x=-40
Subtract 49 from 9 to get -40.
\frac{140x^{2}-180x}{140}=-\frac{40}{140}
Divide both sides by 140.
x^{2}+\left(-\frac{180}{140}\right)x=-\frac{40}{140}
Dividing by 140 undoes the multiplication by 140.
x^{2}-\frac{9}{7}x=-\frac{40}{140}
Reduce the fraction \frac{-180}{140} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{9}{7}x=-\frac{2}{7}
Reduce the fraction \frac{-40}{140} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{9}{7}x+\left(-\frac{9}{14}\right)^{2}=-\frac{2}{7}+\left(-\frac{9}{14}\right)^{2}
Divide -\frac{9}{7}, the coefficient of the x term, by 2 to get -\frac{9}{14}. Then add the square of -\frac{9}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{7}x+\frac{81}{196}=-\frac{2}{7}+\frac{81}{196}
Square -\frac{9}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{7}x+\frac{81}{196}=\frac{25}{196}
Add -\frac{2}{7} to \frac{81}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{14}\right)^{2}=\frac{25}{196}
Factor x^{2}-\frac{9}{7}x+\frac{81}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{14}\right)^{2}}=\sqrt{\frac{25}{196}}
Take the square root of both sides of the equation.
x-\frac{9}{14}=\frac{5}{14} x-\frac{9}{14}=-\frac{5}{14}
Simplify.
x=1 x=\frac{2}{7}
Add \frac{9}{14} to both sides of the equation.