Evaluate
4y-3x
Expand
4y-3x
Share
Copied to clipboard
12x\left(-\frac{1}{4}\right)-16y\left(-\frac{1}{4}\right)
Use the distributive property to multiply 12x-16y by -\frac{1}{4}.
\frac{12\left(-1\right)}{4}x-16y\left(-\frac{1}{4}\right)
Express 12\left(-\frac{1}{4}\right) as a single fraction.
\frac{-12}{4}x-16y\left(-\frac{1}{4}\right)
Multiply 12 and -1 to get -12.
-3x-16y\left(-\frac{1}{4}\right)
Divide -12 by 4 to get -3.
-3x+\frac{-16\left(-1\right)}{4}y
Express -16\left(-\frac{1}{4}\right) as a single fraction.
-3x+\frac{16}{4}y
Multiply -16 and -1 to get 16.
-3x+4y
Divide 16 by 4 to get 4.
12x\left(-\frac{1}{4}\right)-16y\left(-\frac{1}{4}\right)
Use the distributive property to multiply 12x-16y by -\frac{1}{4}.
\frac{12\left(-1\right)}{4}x-16y\left(-\frac{1}{4}\right)
Express 12\left(-\frac{1}{4}\right) as a single fraction.
\frac{-12}{4}x-16y\left(-\frac{1}{4}\right)
Multiply 12 and -1 to get -12.
-3x-16y\left(-\frac{1}{4}\right)
Divide -12 by 4 to get -3.
-3x+\frac{-16\left(-1\right)}{4}y
Express -16\left(-\frac{1}{4}\right) as a single fraction.
-3x+\frac{16}{4}y
Multiply -16 and -1 to get 16.
-3x+4y
Divide 16 by 4 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}