Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

144\left(x^{3}\right)^{2}-144x^{3}x^{2}+36\left(x^{2}\right)^{2}+\left(-6x^{2}+1\right)\times 2x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12x^{3}-6x^{2}\right)^{2}.
144x^{6}-144x^{3}x^{2}+36\left(x^{2}\right)^{2}+\left(-6x^{2}+1\right)\times 2x^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
144x^{6}-144x^{5}+36\left(x^{2}\right)^{2}+\left(-6x^{2}+1\right)\times 2x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
144x^{6}-144x^{5}+36x^{4}+\left(-6x^{2}+1\right)\times 2x^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
144x^{6}-144x^{5}+36x^{4}+\left(-12x^{2}+2\right)x^{3}
Use the distributive property to multiply -6x^{2}+1 by 2.
144x^{6}-144x^{5}+36x^{4}-12x^{5}+2x^{3}
Use the distributive property to multiply -12x^{2}+2 by x^{3}.
144x^{6}-156x^{5}+36x^{4}+2x^{3}
Combine -144x^{5} and -12x^{5} to get -156x^{5}.
144\left(x^{3}\right)^{2}-144x^{3}x^{2}+36\left(x^{2}\right)^{2}+\left(-6x^{2}+1\right)\times 2x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(12x^{3}-6x^{2}\right)^{2}.
144x^{6}-144x^{3}x^{2}+36\left(x^{2}\right)^{2}+\left(-6x^{2}+1\right)\times 2x^{3}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
144x^{6}-144x^{5}+36\left(x^{2}\right)^{2}+\left(-6x^{2}+1\right)\times 2x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
144x^{6}-144x^{5}+36x^{4}+\left(-6x^{2}+1\right)\times 2x^{3}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
144x^{6}-144x^{5}+36x^{4}+\left(-12x^{2}+2\right)x^{3}
Use the distributive property to multiply -6x^{2}+1 by 2.
144x^{6}-144x^{5}+36x^{4}-12x^{5}+2x^{3}
Use the distributive property to multiply -12x^{2}+2 by x^{3}.
144x^{6}-156x^{5}+36x^{4}+2x^{3}
Combine -144x^{5} and -12x^{5} to get -156x^{5}.