Evaluate
\frac{81m^{21}}{2n^{19}}
Expand
\frac{81m^{21}}{2n^{19}}
Share
Copied to clipboard
12^{-2}\left(m^{-3}\right)^{-2}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
Expand \left(12m^{-3}n^{5}\right)^{-2}.
12^{-2}m^{6}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
12^{-2}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{1}{144}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
Calculate 12 to the power of -2 and get \frac{1}{144}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}\left(m^{5}\right)^{3}\left(n^{-3}\right)^{3}
Expand \left(18m^{5}n^{-3}\right)^{3}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}\left(n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}n^{-9}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{1}{144}m^{6}n^{-10}\times 5832m^{15}n^{-9}
Calculate 18 to the power of 3 and get 5832.
\frac{81}{2}m^{6}n^{-10}m^{15}n^{-9}
Multiply \frac{1}{144} and 5832 to get \frac{81}{2}.
\frac{81}{2}m^{21}n^{-10}n^{-9}
To multiply powers of the same base, add their exponents. Add 6 and 15 to get 21.
\frac{81}{2}m^{21}n^{-19}
To multiply powers of the same base, add their exponents. Add -10 and -9 to get -19.
12^{-2}\left(m^{-3}\right)^{-2}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
Expand \left(12m^{-3}n^{5}\right)^{-2}.
12^{-2}m^{6}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
12^{-2}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{1}{144}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
Calculate 12 to the power of -2 and get \frac{1}{144}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}\left(m^{5}\right)^{3}\left(n^{-3}\right)^{3}
Expand \left(18m^{5}n^{-3}\right)^{3}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}\left(n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}n^{-9}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{1}{144}m^{6}n^{-10}\times 5832m^{15}n^{-9}
Calculate 18 to the power of 3 and get 5832.
\frac{81}{2}m^{6}n^{-10}m^{15}n^{-9}
Multiply \frac{1}{144} and 5832 to get \frac{81}{2}.
\frac{81}{2}m^{21}n^{-10}n^{-9}
To multiply powers of the same base, add their exponents. Add 6 and 15 to get 21.
\frac{81}{2}m^{21}n^{-19}
To multiply powers of the same base, add their exponents. Add -10 and -9 to get -19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}