Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

12^{-2}\left(m^{-3}\right)^{-2}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
Expand \left(12m^{-3}n^{5}\right)^{-2}.
12^{-2}m^{6}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
12^{-2}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{1}{144}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
Calculate 12 to the power of -2 and get \frac{1}{144}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}\left(m^{5}\right)^{3}\left(n^{-3}\right)^{3}
Expand \left(18m^{5}n^{-3}\right)^{3}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}\left(n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}n^{-9}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{1}{144}m^{6}n^{-10}\times 5832m^{15}n^{-9}
Calculate 18 to the power of 3 and get 5832.
\frac{81}{2}m^{6}n^{-10}m^{15}n^{-9}
Multiply \frac{1}{144} and 5832 to get \frac{81}{2}.
\frac{81}{2}m^{21}n^{-10}n^{-9}
To multiply powers of the same base, add their exponents. Add 6 and 15 to get 21.
\frac{81}{2}m^{21}n^{-19}
To multiply powers of the same base, add their exponents. Add -10 and -9 to get -19.
12^{-2}\left(m^{-3}\right)^{-2}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
Expand \left(12m^{-3}n^{5}\right)^{-2}.
12^{-2}m^{6}\left(n^{5}\right)^{-2}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply -3 and -2 to get 6.
12^{-2}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and -2 to get -10.
\frac{1}{144}m^{6}n^{-10}\times \left(18m^{5}n^{-3}\right)^{3}
Calculate 12 to the power of -2 and get \frac{1}{144}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}\left(m^{5}\right)^{3}\left(n^{-3}\right)^{3}
Expand \left(18m^{5}n^{-3}\right)^{3}.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}\left(n^{-3}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{1}{144}m^{6}n^{-10}\times 18^{3}m^{15}n^{-9}
To raise a power to another power, multiply the exponents. Multiply -3 and 3 to get -9.
\frac{1}{144}m^{6}n^{-10}\times 5832m^{15}n^{-9}
Calculate 18 to the power of 3 and get 5832.
\frac{81}{2}m^{6}n^{-10}m^{15}n^{-9}
Multiply \frac{1}{144} and 5832 to get \frac{81}{2}.
\frac{81}{2}m^{21}n^{-10}n^{-9}
To multiply powers of the same base, add their exponents. Add 6 and 15 to get 21.
\frac{81}{2}m^{21}n^{-19}
To multiply powers of the same base, add their exponents. Add -10 and -9 to get -19.