Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

144\left(\sqrt{14}\right)^{2}+24\sqrt{14}+1-\left(12\sqrt{14}+1\right)+1-12\sqrt{14}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12\sqrt{14}+1\right)^{2}.
144\times 14+24\sqrt{14}+1-\left(12\sqrt{14}+1\right)+1-12\sqrt{14}
The square of \sqrt{14} is 14.
2016+24\sqrt{14}+1-\left(12\sqrt{14}+1\right)+1-12\sqrt{14}
Multiply 144 and 14 to get 2016.
2017+24\sqrt{14}-\left(12\sqrt{14}+1\right)+1-12\sqrt{14}
Add 2016 and 1 to get 2017.
2017+24\sqrt{14}-12\sqrt{14}-1+1-12\sqrt{14}
To find the opposite of 12\sqrt{14}+1, find the opposite of each term.
2017+12\sqrt{14}-1+1-12\sqrt{14}
Combine 24\sqrt{14} and -12\sqrt{14} to get 12\sqrt{14}.
2016+12\sqrt{14}+1-12\sqrt{14}
Subtract 1 from 2017 to get 2016.
2017+12\sqrt{14}-12\sqrt{14}
Add 2016 and 1 to get 2017.
2017
Combine 12\sqrt{14} and -12\sqrt{14} to get 0.