Evaluate
13k^{3}-2k^{2}+2k+27
Differentiate w.r.t. k
39k^{2}-4k+2
Share
Copied to clipboard
12+13k^{3}+3k-4k^{2}+15-k+2k^{2}
Combine 8k^{3} and 5k^{3} to get 13k^{3}.
27+13k^{3}+3k-4k^{2}-k+2k^{2}
Add 12 and 15 to get 27.
27+13k^{3}+2k-4k^{2}+2k^{2}
Combine 3k and -k to get 2k.
27+13k^{3}+2k-2k^{2}
Combine -4k^{2} and 2k^{2} to get -2k^{2}.
\frac{\mathrm{d}}{\mathrm{d}k}(12+13k^{3}+3k-4k^{2}+15-k+2k^{2})
Combine 8k^{3} and 5k^{3} to get 13k^{3}.
\frac{\mathrm{d}}{\mathrm{d}k}(27+13k^{3}+3k-4k^{2}-k+2k^{2})
Add 12 and 15 to get 27.
\frac{\mathrm{d}}{\mathrm{d}k}(27+13k^{3}+2k-4k^{2}+2k^{2})
Combine 3k and -k to get 2k.
\frac{\mathrm{d}}{\mathrm{d}k}(27+13k^{3}+2k-2k^{2})
Combine -4k^{2} and 2k^{2} to get -2k^{2}.
3\times 13k^{3-1}+2k^{1-1}+2\left(-2\right)k^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
39k^{3-1}+2k^{1-1}+2\left(-2\right)k^{2-1}
Multiply 3 times 13.
39k^{2}+2k^{1-1}+2\left(-2\right)k^{2-1}
Subtract 1 from 3.
39k^{2}+2k^{0}+2\left(-2\right)k^{2-1}
Subtract 1 from 1.
39k^{2}+2k^{0}-4k^{2-1}
Multiply 1 times 2.
39k^{2}+2k^{0}-4k^{1}
Subtract 1 from 2.
39k^{2}+2k^{0}-4k
For any term t, t^{1}=t.
39k^{2}+2\times 1-4k
For any term t except 0, t^{0}=1.
39k^{2}+2-4k
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}