Evaluate
15n^{2}-3n-1
Factor
15\left(n-\left(-\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)\left(n-\left(\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)
Share
Copied to clipboard
15n^{2}+2n-8-5n+7
Combine 11n^{2} and 4n^{2} to get 15n^{2}.
15n^{2}-3n-8+7
Combine 2n and -5n to get -3n.
15n^{2}-3n-1
Add -8 and 7 to get -1.
factor(15n^{2}+2n-8-5n+7)
Combine 11n^{2} and 4n^{2} to get 15n^{2}.
factor(15n^{2}-3n-8+7)
Combine 2n and -5n to get -3n.
factor(15n^{2}-3n-1)
Add -8 and 7 to get -1.
15n^{2}-3n-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 15\left(-1\right)}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-3\right)±\sqrt{9-4\times 15\left(-1\right)}}{2\times 15}
Square -3.
n=\frac{-\left(-3\right)±\sqrt{9-60\left(-1\right)}}{2\times 15}
Multiply -4 times 15.
n=\frac{-\left(-3\right)±\sqrt{9+60}}{2\times 15}
Multiply -60 times -1.
n=\frac{-\left(-3\right)±\sqrt{69}}{2\times 15}
Add 9 to 60.
n=\frac{3±\sqrt{69}}{2\times 15}
The opposite of -3 is 3.
n=\frac{3±\sqrt{69}}{30}
Multiply 2 times 15.
n=\frac{\sqrt{69}+3}{30}
Now solve the equation n=\frac{3±\sqrt{69}}{30} when ± is plus. Add 3 to \sqrt{69}.
n=\frac{\sqrt{69}}{30}+\frac{1}{10}
Divide 3+\sqrt{69} by 30.
n=\frac{3-\sqrt{69}}{30}
Now solve the equation n=\frac{3±\sqrt{69}}{30} when ± is minus. Subtract \sqrt{69} from 3.
n=-\frac{\sqrt{69}}{30}+\frac{1}{10}
Divide 3-\sqrt{69} by 30.
15n^{2}-3n-1=15\left(n-\left(\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)\left(n-\left(-\frac{\sqrt{69}}{30}+\frac{1}{10}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{10}+\frac{\sqrt{69}}{30} for x_{1} and \frac{1}{10}-\frac{\sqrt{69}}{30} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}