Solve for x
x = -\frac{400}{3} = -133\frac{1}{3} \approx -133.333333333
x=0
Graph
Share
Copied to clipboard
10000+x^{2}=\left(2x+100\right)^{2}
Calculate 100 to the power of 2 and get 10000.
10000+x^{2}=4x^{2}+400x+10000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+100\right)^{2}.
10000+x^{2}-4x^{2}=400x+10000
Subtract 4x^{2} from both sides.
10000-3x^{2}=400x+10000
Combine x^{2} and -4x^{2} to get -3x^{2}.
10000-3x^{2}-400x=10000
Subtract 400x from both sides.
10000-3x^{2}-400x-10000=0
Subtract 10000 from both sides.
-3x^{2}-400x=0
Subtract 10000 from 10000 to get 0.
x\left(-3x-400\right)=0
Factor out x.
x=0 x=-\frac{400}{3}
To find equation solutions, solve x=0 and -3x-400=0.
10000+x^{2}=\left(2x+100\right)^{2}
Calculate 100 to the power of 2 and get 10000.
10000+x^{2}=4x^{2}+400x+10000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+100\right)^{2}.
10000+x^{2}-4x^{2}=400x+10000
Subtract 4x^{2} from both sides.
10000-3x^{2}=400x+10000
Combine x^{2} and -4x^{2} to get -3x^{2}.
10000-3x^{2}-400x=10000
Subtract 400x from both sides.
10000-3x^{2}-400x-10000=0
Subtract 10000 from both sides.
-3x^{2}-400x=0
Subtract 10000 from 10000 to get 0.
x=\frac{-\left(-400\right)±\sqrt{\left(-400\right)^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -400 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-400\right)±400}{2\left(-3\right)}
Take the square root of \left(-400\right)^{2}.
x=\frac{400±400}{2\left(-3\right)}
The opposite of -400 is 400.
x=\frac{400±400}{-6}
Multiply 2 times -3.
x=\frac{800}{-6}
Now solve the equation x=\frac{400±400}{-6} when ± is plus. Add 400 to 400.
x=-\frac{400}{3}
Reduce the fraction \frac{800}{-6} to lowest terms by extracting and canceling out 2.
x=\frac{0}{-6}
Now solve the equation x=\frac{400±400}{-6} when ± is minus. Subtract 400 from 400.
x=0
Divide 0 by -6.
x=-\frac{400}{3} x=0
The equation is now solved.
10000+x^{2}=\left(2x+100\right)^{2}
Calculate 100 to the power of 2 and get 10000.
10000+x^{2}=4x^{2}+400x+10000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+100\right)^{2}.
10000+x^{2}-4x^{2}=400x+10000
Subtract 4x^{2} from both sides.
10000-3x^{2}=400x+10000
Combine x^{2} and -4x^{2} to get -3x^{2}.
10000-3x^{2}-400x=10000
Subtract 400x from both sides.
-3x^{2}-400x=10000-10000
Subtract 10000 from both sides.
-3x^{2}-400x=0
Subtract 10000 from 10000 to get 0.
\frac{-3x^{2}-400x}{-3}=\frac{0}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{400}{-3}\right)x=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{400}{3}x=\frac{0}{-3}
Divide -400 by -3.
x^{2}+\frac{400}{3}x=0
Divide 0 by -3.
x^{2}+\frac{400}{3}x+\left(\frac{200}{3}\right)^{2}=\left(\frac{200}{3}\right)^{2}
Divide \frac{400}{3}, the coefficient of the x term, by 2 to get \frac{200}{3}. Then add the square of \frac{200}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{400}{3}x+\frac{40000}{9}=\frac{40000}{9}
Square \frac{200}{3} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{200}{3}\right)^{2}=\frac{40000}{9}
Factor x^{2}+\frac{400}{3}x+\frac{40000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{200}{3}\right)^{2}}=\sqrt{\frac{40000}{9}}
Take the square root of both sides of the equation.
x+\frac{200}{3}=\frac{200}{3} x+\frac{200}{3}=-\frac{200}{3}
Simplify.
x=0 x=-\frac{400}{3}
Subtract \frac{200}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}