Solve for x
x=10\sqrt{31}-40\approx 15.677643628
x=-10\sqrt{31}-40\approx -95.677643628
Graph
Share
Copied to clipboard
6000+320x+4x^{2}=200\times 60
Use the distributive property to multiply 100+2x by 60+2x and combine like terms.
6000+320x+4x^{2}=12000
Multiply 200 and 60 to get 12000.
6000+320x+4x^{2}-12000=0
Subtract 12000 from both sides.
-6000+320x+4x^{2}=0
Subtract 12000 from 6000 to get -6000.
4x^{2}+320x-6000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-320±\sqrt{320^{2}-4\times 4\left(-6000\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 320 for b, and -6000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-320±\sqrt{102400-4\times 4\left(-6000\right)}}{2\times 4}
Square 320.
x=\frac{-320±\sqrt{102400-16\left(-6000\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-320±\sqrt{102400+96000}}{2\times 4}
Multiply -16 times -6000.
x=\frac{-320±\sqrt{198400}}{2\times 4}
Add 102400 to 96000.
x=\frac{-320±80\sqrt{31}}{2\times 4}
Take the square root of 198400.
x=\frac{-320±80\sqrt{31}}{8}
Multiply 2 times 4.
x=\frac{80\sqrt{31}-320}{8}
Now solve the equation x=\frac{-320±80\sqrt{31}}{8} when ± is plus. Add -320 to 80\sqrt{31}.
x=10\sqrt{31}-40
Divide -320+80\sqrt{31} by 8.
x=\frac{-80\sqrt{31}-320}{8}
Now solve the equation x=\frac{-320±80\sqrt{31}}{8} when ± is minus. Subtract 80\sqrt{31} from -320.
x=-10\sqrt{31}-40
Divide -320-80\sqrt{31} by 8.
x=10\sqrt{31}-40 x=-10\sqrt{31}-40
The equation is now solved.
6000+320x+4x^{2}=200\times 60
Use the distributive property to multiply 100+2x by 60+2x and combine like terms.
6000+320x+4x^{2}=12000
Multiply 200 and 60 to get 12000.
320x+4x^{2}=12000-6000
Subtract 6000 from both sides.
320x+4x^{2}=6000
Subtract 6000 from 12000 to get 6000.
4x^{2}+320x=6000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+320x}{4}=\frac{6000}{4}
Divide both sides by 4.
x^{2}+\frac{320}{4}x=\frac{6000}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+80x=\frac{6000}{4}
Divide 320 by 4.
x^{2}+80x=1500
Divide 6000 by 4.
x^{2}+80x+40^{2}=1500+40^{2}
Divide 80, the coefficient of the x term, by 2 to get 40. Then add the square of 40 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+80x+1600=1500+1600
Square 40.
x^{2}+80x+1600=3100
Add 1500 to 1600.
\left(x+40\right)^{2}=3100
Factor x^{2}+80x+1600. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+40\right)^{2}}=\sqrt{3100}
Take the square root of both sides of the equation.
x+40=10\sqrt{31} x+40=-10\sqrt{31}
Simplify.
x=10\sqrt{31}-40 x=-10\sqrt{31}-40
Subtract 40 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}