Evaluate
19x^{3}+3x^{2}-6x+15
Differentiate w.r.t. x
57x^{2}+6x-6
Graph
Share
Copied to clipboard
19x^{3}-4x+11+3x^{2}-2x+4
Combine 10x^{3} and 9x^{3} to get 19x^{3}.
19x^{3}-6x+11+3x^{2}+4
Combine -4x and -2x to get -6x.
19x^{3}-6x+15+3x^{2}
Add 11 and 4 to get 15.
\frac{\mathrm{d}}{\mathrm{d}x}(19x^{3}-4x+11+3x^{2}-2x+4)
Combine 10x^{3} and 9x^{3} to get 19x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(19x^{3}-6x+11+3x^{2}+4)
Combine -4x and -2x to get -6x.
\frac{\mathrm{d}}{\mathrm{d}x}(19x^{3}-6x+15+3x^{2})
Add 11 and 4 to get 15.
3\times 19x^{3-1}-6x^{1-1}+2\times 3x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
57x^{3-1}-6x^{1-1}+2\times 3x^{2-1}
Multiply 3 times 19.
57x^{2}-6x^{1-1}+2\times 3x^{2-1}
Subtract 1 from 3.
57x^{2}-6x^{0}+2\times 3x^{2-1}
Subtract 1 from 1.
57x^{2}-6x^{0}+6x^{2-1}
Multiply 1 times -6.
57x^{2}-6x^{0}+6x^{1}
Subtract 1 from 2.
57x^{2}-6x^{0}+6x
For any term t, t^{1}=t.
57x^{2}-6+6x
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}