Solve for x
x=\frac{2\sqrt{190}-28}{9}\approx -0.047989166
x=\frac{-2\sqrt{190}-28}{9}\approx -6.174233056
Graph
Share
Copied to clipboard
100x^{2}+160x+64=\frac{8}{15}\left(120x^{2}-120x+100\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10x+8\right)^{2}.
100x^{2}+160x+64=64x^{2}-64x+\frac{160}{3}
Use the distributive property to multiply \frac{8}{15} by 120x^{2}-120x+100.
100x^{2}+160x+64-64x^{2}=-64x+\frac{160}{3}
Subtract 64x^{2} from both sides.
36x^{2}+160x+64=-64x+\frac{160}{3}
Combine 100x^{2} and -64x^{2} to get 36x^{2}.
36x^{2}+160x+64+64x=\frac{160}{3}
Add 64x to both sides.
36x^{2}+224x+64=\frac{160}{3}
Combine 160x and 64x to get 224x.
36x^{2}+224x+64-\frac{160}{3}=0
Subtract \frac{160}{3} from both sides.
36x^{2}+224x+\frac{32}{3}=0
Subtract \frac{160}{3} from 64 to get \frac{32}{3}.
x=\frac{-224±\sqrt{224^{2}-4\times 36\times \frac{32}{3}}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 224 for b, and \frac{32}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-224±\sqrt{50176-4\times 36\times \frac{32}{3}}}{2\times 36}
Square 224.
x=\frac{-224±\sqrt{50176-144\times \frac{32}{3}}}{2\times 36}
Multiply -4 times 36.
x=\frac{-224±\sqrt{50176-1536}}{2\times 36}
Multiply -144 times \frac{32}{3}.
x=\frac{-224±\sqrt{48640}}{2\times 36}
Add 50176 to -1536.
x=\frac{-224±16\sqrt{190}}{2\times 36}
Take the square root of 48640.
x=\frac{-224±16\sqrt{190}}{72}
Multiply 2 times 36.
x=\frac{16\sqrt{190}-224}{72}
Now solve the equation x=\frac{-224±16\sqrt{190}}{72} when ± is plus. Add -224 to 16\sqrt{190}.
x=\frac{2\sqrt{190}-28}{9}
Divide -224+16\sqrt{190} by 72.
x=\frac{-16\sqrt{190}-224}{72}
Now solve the equation x=\frac{-224±16\sqrt{190}}{72} when ± is minus. Subtract 16\sqrt{190} from -224.
x=\frac{-2\sqrt{190}-28}{9}
Divide -224-16\sqrt{190} by 72.
x=\frac{2\sqrt{190}-28}{9} x=\frac{-2\sqrt{190}-28}{9}
The equation is now solved.
100x^{2}+160x+64=\frac{8}{15}\left(120x^{2}-120x+100\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10x+8\right)^{2}.
100x^{2}+160x+64=64x^{2}-64x+\frac{160}{3}
Use the distributive property to multiply \frac{8}{15} by 120x^{2}-120x+100.
100x^{2}+160x+64-64x^{2}=-64x+\frac{160}{3}
Subtract 64x^{2} from both sides.
36x^{2}+160x+64=-64x+\frac{160}{3}
Combine 100x^{2} and -64x^{2} to get 36x^{2}.
36x^{2}+160x+64+64x=\frac{160}{3}
Add 64x to both sides.
36x^{2}+224x+64=\frac{160}{3}
Combine 160x and 64x to get 224x.
36x^{2}+224x=\frac{160}{3}-64
Subtract 64 from both sides.
36x^{2}+224x=-\frac{32}{3}
Subtract 64 from \frac{160}{3} to get -\frac{32}{3}.
\frac{36x^{2}+224x}{36}=-\frac{\frac{32}{3}}{36}
Divide both sides by 36.
x^{2}+\frac{224}{36}x=-\frac{\frac{32}{3}}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{56}{9}x=-\frac{\frac{32}{3}}{36}
Reduce the fraction \frac{224}{36} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{56}{9}x=-\frac{8}{27}
Divide -\frac{32}{3} by 36.
x^{2}+\frac{56}{9}x+\left(\frac{28}{9}\right)^{2}=-\frac{8}{27}+\left(\frac{28}{9}\right)^{2}
Divide \frac{56}{9}, the coefficient of the x term, by 2 to get \frac{28}{9}. Then add the square of \frac{28}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{56}{9}x+\frac{784}{81}=-\frac{8}{27}+\frac{784}{81}
Square \frac{28}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{56}{9}x+\frac{784}{81}=\frac{760}{81}
Add -\frac{8}{27} to \frac{784}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{28}{9}\right)^{2}=\frac{760}{81}
Factor x^{2}+\frac{56}{9}x+\frac{784}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{28}{9}\right)^{2}}=\sqrt{\frac{760}{81}}
Take the square root of both sides of the equation.
x+\frac{28}{9}=\frac{2\sqrt{190}}{9} x+\frac{28}{9}=-\frac{2\sqrt{190}}{9}
Simplify.
x=\frac{2\sqrt{190}-28}{9} x=\frac{-2\sqrt{190}-28}{9}
Subtract \frac{28}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}