Evaluate
40\left(x+2\right)\left(x+1\right)^{2}
Expand
40x^{3}+160x^{2}+200x+80
Graph
Share
Copied to clipboard
\left(10x+20\right)\left(2x+2\right)^{2}
Multiply 2x+2 and 2x+2 to get \left(2x+2\right)^{2}.
\left(10x+20\right)\left(4x^{2}+8x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
40x^{3}+80x^{2}+40x+80x^{2}+160x+80
Apply the distributive property by multiplying each term of 10x+20 by each term of 4x^{2}+8x+4.
40x^{3}+160x^{2}+40x+160x+80
Combine 80x^{2} and 80x^{2} to get 160x^{2}.
40x^{3}+160x^{2}+200x+80
Combine 40x and 160x to get 200x.
\left(10x+20\right)\left(2x+2\right)^{2}
Multiply 2x+2 and 2x+2 to get \left(2x+2\right)^{2}.
\left(10x+20\right)\left(4x^{2}+8x+4\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
40x^{3}+80x^{2}+40x+80x^{2}+160x+80
Apply the distributive property by multiplying each term of 10x+20 by each term of 4x^{2}+8x+4.
40x^{3}+160x^{2}+40x+160x+80
Combine 80x^{2} and 80x^{2} to get 160x^{2}.
40x^{3}+160x^{2}+200x+80
Combine 40x and 160x to get 200x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}