Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

80+2x-x^{2}=90
Use the distributive property to multiply 10-x by 8+x and combine like terms.
80+2x-x^{2}-90=0
Subtract 90 from both sides.
-10+2x-x^{2}=0
Subtract 90 from 80 to get -10.
-x^{2}+2x-10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 2 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-10\right)}}{2\left(-1\right)}
Square 2.
x=\frac{-2±\sqrt{4+4\left(-10\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-2±\sqrt{4-40}}{2\left(-1\right)}
Multiply 4 times -10.
x=\frac{-2±\sqrt{-36}}{2\left(-1\right)}
Add 4 to -40.
x=\frac{-2±6i}{2\left(-1\right)}
Take the square root of -36.
x=\frac{-2±6i}{-2}
Multiply 2 times -1.
x=\frac{-2+6i}{-2}
Now solve the equation x=\frac{-2±6i}{-2} when ± is plus. Add -2 to 6i.
x=1-3i
Divide -2+6i by -2.
x=\frac{-2-6i}{-2}
Now solve the equation x=\frac{-2±6i}{-2} when ± is minus. Subtract 6i from -2.
x=1+3i
Divide -2-6i by -2.
x=1-3i x=1+3i
The equation is now solved.
80+2x-x^{2}=90
Use the distributive property to multiply 10-x by 8+x and combine like terms.
2x-x^{2}=90-80
Subtract 80 from both sides.
2x-x^{2}=10
Subtract 80 from 90 to get 10.
-x^{2}+2x=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=\frac{10}{-1}
Divide both sides by -1.
x^{2}+\frac{2}{-1}x=\frac{10}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-2x=\frac{10}{-1}
Divide 2 by -1.
x^{2}-2x=-10
Divide 10 by -1.
x^{2}-2x+1=-10+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-9
Add -10 to 1.
\left(x-1\right)^{2}=-9
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-9}
Take the square root of both sides of the equation.
x-1=3i x-1=-3i
Simplify.
x=1+3i x=1-3i
Add 1 to both sides of the equation.