Solve for x
x = \frac{\sqrt{17} + 21}{2} \approx 12.561552813
x = \frac{21 - \sqrt{17}}{2} \approx 8.438447187
Graph
Share
Copied to clipboard
100-20x+x^{2}+6=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
106-20x+x^{2}=x
Add 100 and 6 to get 106.
106-20x+x^{2}-x=0
Subtract x from both sides.
106-21x+x^{2}=0
Combine -20x and -x to get -21x.
x^{2}-21x+106=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 106}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -21 for b, and 106 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 106}}{2}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-424}}{2}
Multiply -4 times 106.
x=\frac{-\left(-21\right)±\sqrt{17}}{2}
Add 441 to -424.
x=\frac{21±\sqrt{17}}{2}
The opposite of -21 is 21.
x=\frac{\sqrt{17}+21}{2}
Now solve the equation x=\frac{21±\sqrt{17}}{2} when ± is plus. Add 21 to \sqrt{17}.
x=\frac{21-\sqrt{17}}{2}
Now solve the equation x=\frac{21±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from 21.
x=\frac{\sqrt{17}+21}{2} x=\frac{21-\sqrt{17}}{2}
The equation is now solved.
100-20x+x^{2}+6=x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
106-20x+x^{2}=x
Add 100 and 6 to get 106.
106-20x+x^{2}-x=0
Subtract x from both sides.
106-21x+x^{2}=0
Combine -20x and -x to get -21x.
-21x+x^{2}=-106
Subtract 106 from both sides. Anything subtracted from zero gives its negation.
x^{2}-21x=-106
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-106+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-21x+\frac{441}{4}=-106+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-21x+\frac{441}{4}=\frac{17}{4}
Add -106 to \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{17}{4}
Factor x^{2}-21x+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
x-\frac{21}{2}=\frac{\sqrt{17}}{2} x-\frac{21}{2}=-\frac{\sqrt{17}}{2}
Simplify.
x=\frac{\sqrt{17}+21}{2} x=\frac{21-\sqrt{17}}{2}
Add \frac{21}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}