Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\left(10-2i\right)z=2i-\left(5+i\right)
Subtract 5+i from both sides.
\left(10-2i\right)z=5+\left(2-1\right)i
Subtract 5+i from 2i by subtracting corresponding real and imaginary parts.
\left(10-2i\right)z=-5+i
Subtract 1 from 2.
z=\frac{-5+i}{10-2i}
Divide both sides by 10-2i.
z=\frac{\left(-5+i\right)\left(10+2i\right)}{\left(10-2i\right)\left(10+2i\right)}
Multiply both numerator and denominator of \frac{-5+i}{10-2i} by the complex conjugate of the denominator, 10+2i.
z=\frac{\left(-5+i\right)\left(10+2i\right)}{10^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-5+i\right)\left(10+2i\right)}{104}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-5\times 10-5\times \left(2i\right)+10i+2i^{2}}{104}
Multiply complex numbers -5+i and 10+2i like you multiply binomials.
z=\frac{-5\times 10-5\times \left(2i\right)+10i+2\left(-1\right)}{104}
By definition, i^{2} is -1.
z=\frac{-50-10i+10i-2}{104}
Do the multiplications in -5\times 10-5\times \left(2i\right)+10i+2\left(-1\right).
z=\frac{-50-2+\left(-10+10\right)i}{104}
Combine the real and imaginary parts in -50-10i+10i-2.
z=\frac{-52}{104}
Do the additions in -50-2+\left(-10+10\right)i.
z=-\frac{1}{2}
Divide -52 by 104 to get -\frac{1}{2}.