Solve for z
z=-\frac{1}{2}=-0.5
Share
Copied to clipboard
\left(10-2i\right)z=2i-\left(5+i\right)
Subtract 5+i from both sides.
\left(10-2i\right)z=5+\left(2-1\right)i
Subtract 5+i from 2i by subtracting corresponding real and imaginary parts.
\left(10-2i\right)z=-5+i
Subtract 1 from 2.
z=\frac{-5+i}{10-2i}
Divide both sides by 10-2i.
z=\frac{\left(-5+i\right)\left(10+2i\right)}{\left(10-2i\right)\left(10+2i\right)}
Multiply both numerator and denominator of \frac{-5+i}{10-2i} by the complex conjugate of the denominator, 10+2i.
z=\frac{\left(-5+i\right)\left(10+2i\right)}{10^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(-5+i\right)\left(10+2i\right)}{104}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{-5\times 10-5\times \left(2i\right)+10i+2i^{2}}{104}
Multiply complex numbers -5+i and 10+2i like you multiply binomials.
z=\frac{-5\times 10-5\times \left(2i\right)+10i+2\left(-1\right)}{104}
By definition, i^{2} is -1.
z=\frac{-50-10i+10i-2}{104}
Do the multiplications in -5\times 10-5\times \left(2i\right)+10i+2\left(-1\right).
z=\frac{-50-2+\left(-10+10\right)i}{104}
Combine the real and imaginary parts in -50-10i+10i-2.
z=\frac{-52}{104}
Do the additions in -50-2+\left(-10+10\right)i.
z=-\frac{1}{2}
Divide -52 by 104 to get -\frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}