Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(10-\sqrt{2}c+12\right)\left(\frac{\sqrt{2}c}{2}+10\right)\times \frac{1}{2}
Express \frac{\sqrt{2}}{2}c as a single fraction.
\left(10-\sqrt{2}c+12\right)\left(\frac{\sqrt{2}c}{2}+\frac{10\times 2}{2}\right)\times \frac{1}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 10 times \frac{2}{2}.
\left(10-\sqrt{2}c+12\right)\times \frac{\sqrt{2}c+10\times 2}{2}\times \frac{1}{2}
Since \frac{\sqrt{2}c}{2} and \frac{10\times 2}{2} have the same denominator, add them by adding their numerators.
\left(10-\sqrt{2}c+12\right)\times \frac{\sqrt{2}c+20}{2}\times \frac{1}{2}
Do the multiplications in \sqrt{2}c+10\times 2.
\frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{2}\times \frac{1}{2}
Express \left(10-\sqrt{2}c+12\right)\times \frac{\sqrt{2}c+20}{2} as a single fraction.
\frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{2\times 2}
Multiply \frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(10-\sqrt{2}c+12\right)\left(\sqrt{2}c+20\right)}{4}
Multiply 2 and 2 to get 4.
\frac{\left(22-\sqrt{2}c\right)\left(\sqrt{2}c+20\right)}{4}
Add 10 and 12 to get 22.
\frac{22\sqrt{2}c+440-\left(\sqrt{2}\right)^{2}c^{2}-20c\sqrt{2}}{4}
Apply the distributive property by multiplying each term of 22-\sqrt{2}c by each term of \sqrt{2}c+20.
\frac{22\sqrt{2}c+440-2c^{2}-20c\sqrt{2}}{4}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}c+440-2c^{2}}{4}
Combine 22\sqrt{2}c and -20c\sqrt{2} to get 2\sqrt{2}c.