Evaluate
102
Real Part
102
Share
Copied to clipboard
10^{2}-\left(i\sqrt{2}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
100-\left(i\sqrt{2}\right)^{2}
Calculate 10 to the power of 2 and get 100.
100-i^{2}\left(\sqrt{2}\right)^{2}
Expand \left(i\sqrt{2}\right)^{2}.
100-\left(-\left(\sqrt{2}\right)^{2}\right)
Calculate i to the power of 2 and get -1.
100-\left(-2\right)
The square of \sqrt{2} is 2.
100+2
The opposite of -2 is 2.
102
Add 100 and 2 to get 102.
Re(10^{2}-\left(i\sqrt{2}\right)^{2})
Consider \left(10+i\sqrt{2}\right)\left(10-i\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(100-\left(i\sqrt{2}\right)^{2})
Calculate 10 to the power of 2 and get 100.
Re(100-i^{2}\left(\sqrt{2}\right)^{2})
Expand \left(i\sqrt{2}\right)^{2}.
Re(100-\left(-\left(\sqrt{2}\right)^{2}\right))
Calculate i to the power of 2 and get -1.
Re(100-\left(-2\right))
The square of \sqrt{2} is 2.
Re(100+2)
The opposite of -2 is 2.
Re(102)
Add 100 and 2 to get 102.
102
The real part of 102 is 102.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}