Solve for x
x=\frac{\sqrt{321}}{1200}+1.1075\approx 1.122430394
x=-\frac{\sqrt{321}}{1200}+1.1075\approx 1.092569606
Graph
Quiz
Quadratic Equation
5 problems similar to:
( 1.215 - x ) \times 30000 + 30000 = \frac { 36790 } { x }
Share
Copied to clipboard
\left(1.215-x\right)\times 30000x+x\times 30000=36790
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(36450-30000x\right)x+x\times 30000=36790
Use the distributive property to multiply 1.215-x by 30000.
36450x-30000x^{2}+x\times 30000=36790
Use the distributive property to multiply 36450-30000x by x.
66450x-30000x^{2}=36790
Combine 36450x and x\times 30000 to get 66450x.
66450x-30000x^{2}-36790=0
Subtract 36790 from both sides.
-30000x^{2}+66450x-36790=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-66450±\sqrt{66450^{2}-4\left(-30000\right)\left(-36790\right)}}{2\left(-30000\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -30000 for a, 66450 for b, and -36790 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-66450±\sqrt{4415602500-4\left(-30000\right)\left(-36790\right)}}{2\left(-30000\right)}
Square 66450.
x=\frac{-66450±\sqrt{4415602500+120000\left(-36790\right)}}{2\left(-30000\right)}
Multiply -4 times -30000.
x=\frac{-66450±\sqrt{4415602500-4414800000}}{2\left(-30000\right)}
Multiply 120000 times -36790.
x=\frac{-66450±\sqrt{802500}}{2\left(-30000\right)}
Add 4415602500 to -4414800000.
x=\frac{-66450±50\sqrt{321}}{2\left(-30000\right)}
Take the square root of 802500.
x=\frac{-66450±50\sqrt{321}}{-60000}
Multiply 2 times -30000.
x=\frac{50\sqrt{321}-66450}{-60000}
Now solve the equation x=\frac{-66450±50\sqrt{321}}{-60000} when ± is plus. Add -66450 to 50\sqrt{321}.
x=-\frac{\sqrt{321}}{1200}+\frac{443}{400}
Divide -66450+50\sqrt{321} by -60000.
x=\frac{-50\sqrt{321}-66450}{-60000}
Now solve the equation x=\frac{-66450±50\sqrt{321}}{-60000} when ± is minus. Subtract 50\sqrt{321} from -66450.
x=\frac{\sqrt{321}}{1200}+\frac{443}{400}
Divide -66450-50\sqrt{321} by -60000.
x=-\frac{\sqrt{321}}{1200}+\frac{443}{400} x=\frac{\sqrt{321}}{1200}+\frac{443}{400}
The equation is now solved.
\left(1.215-x\right)\times 30000x+x\times 30000=36790
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\left(36450-30000x\right)x+x\times 30000=36790
Use the distributive property to multiply 1.215-x by 30000.
36450x-30000x^{2}+x\times 30000=36790
Use the distributive property to multiply 36450-30000x by x.
66450x-30000x^{2}=36790
Combine 36450x and x\times 30000 to get 66450x.
-30000x^{2}+66450x=36790
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-30000x^{2}+66450x}{-30000}=\frac{36790}{-30000}
Divide both sides by -30000.
x^{2}+\frac{66450}{-30000}x=\frac{36790}{-30000}
Dividing by -30000 undoes the multiplication by -30000.
x^{2}-\frac{443}{200}x=\frac{36790}{-30000}
Reduce the fraction \frac{66450}{-30000} to lowest terms by extracting and canceling out 150.
x^{2}-\frac{443}{200}x=-\frac{3679}{3000}
Reduce the fraction \frac{36790}{-30000} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{443}{200}x+\left(-\frac{443}{400}\right)^{2}=-\frac{3679}{3000}+\left(-\frac{443}{400}\right)^{2}
Divide -\frac{443}{200}, the coefficient of the x term, by 2 to get -\frac{443}{400}. Then add the square of -\frac{443}{400} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{443}{200}x+\frac{196249}{160000}=-\frac{3679}{3000}+\frac{196249}{160000}
Square -\frac{443}{400} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{443}{200}x+\frac{196249}{160000}=\frac{107}{480000}
Add -\frac{3679}{3000} to \frac{196249}{160000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{443}{400}\right)^{2}=\frac{107}{480000}
Factor x^{2}-\frac{443}{200}x+\frac{196249}{160000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{443}{400}\right)^{2}}=\sqrt{\frac{107}{480000}}
Take the square root of both sides of the equation.
x-\frac{443}{400}=\frac{\sqrt{321}}{1200} x-\frac{443}{400}=-\frac{\sqrt{321}}{1200}
Simplify.
x=\frac{\sqrt{321}}{1200}+\frac{443}{400} x=-\frac{\sqrt{321}}{1200}+\frac{443}{400}
Add \frac{443}{400} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}