Solve for x (complex solution)
x=-\frac{i\times 6\sqrt{74}}{5}\approx -0-10.32279032i
x=\frac{i\times 6\sqrt{74}}{5}\approx 10.32279032i
Graph
Share
Copied to clipboard
1.44-x^{2}=108
Consider \left(1.2+x\right)\left(1.2-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.2.
-x^{2}=108-1.44
Subtract 1.44 from both sides.
-x^{2}=106.56
Subtract 1.44 from 108 to get 106.56.
x^{2}=\frac{106.56}{-1}
Divide both sides by -1.
x^{2}=\frac{10656}{-100}
Expand \frac{106.56}{-1} by multiplying both numerator and the denominator by 100.
x^{2}=-\frac{2664}{25}
Reduce the fraction \frac{10656}{-100} to lowest terms by extracting and canceling out 4.
x=\frac{6\sqrt{74}i}{5} x=-\frac{6\sqrt{74}i}{5}
The equation is now solved.
1.44-x^{2}=108
Consider \left(1.2+x\right)\left(1.2-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.2.
1.44-x^{2}-108=0
Subtract 108 from both sides.
-106.56-x^{2}=0
Subtract 108 from 1.44 to get -106.56.
-x^{2}-\frac{2664}{25}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-\frac{2664}{25}\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -\frac{2664}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-\frac{2664}{25}\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-\frac{2664}{25}\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-\frac{10656}{25}}}{2\left(-1\right)}
Multiply 4 times -\frac{2664}{25}.
x=\frac{0±\frac{12\sqrt{74}i}{5}}{2\left(-1\right)}
Take the square root of -\frac{10656}{25}.
x=\frac{0±\frac{12\sqrt{74}i}{5}}{-2}
Multiply 2 times -1.
x=-\frac{6\sqrt{74}i}{5}
Now solve the equation x=\frac{0±\frac{12\sqrt{74}i}{5}}{-2} when ± is plus.
x=\frac{6\sqrt{74}i}{5}
Now solve the equation x=\frac{0±\frac{12\sqrt{74}i}{5}}{-2} when ± is minus.
x=-\frac{6\sqrt{74}i}{5} x=\frac{6\sqrt{74}i}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}