( 1,5 m + 2,3 n + 5 p ) - ( - 2,3 m - 3,2 p + 12 n
Evaluate
\frac{19m}{5}+\frac{41p}{5}-\frac{97n}{10}
Expand
\frac{19m}{5}+\frac{41p}{5}-\frac{97n}{10}
Share
Copied to clipboard
1,5m+2,3n+5p-\left(-2,3m\right)-\left(-3,2p\right)-12n
To find the opposite of -2,3m-3,2p+12n, find the opposite of each term.
1,5m+2,3n+5p+2,3m-\left(-3,2p\right)-12n
The opposite of -2,3m is 2,3m.
1,5m+2,3n+5p+2,3m+3,2p-12n
The opposite of -3,2p is 3,2p.
3,8m+2,3n+5p+3,2p-12n
Combine 1,5m and 2,3m to get 3,8m.
3,8m+2,3n+8,2p-12n
Combine 5p and 3,2p to get 8,2p.
3,8m-9,7n+8,2p
Combine 2,3n and -12n to get -9,7n.
1,5m+2,3n+5p-\left(-2,3m\right)-\left(-3,2p\right)-12n
To find the opposite of -2,3m-3,2p+12n, find the opposite of each term.
1,5m+2,3n+5p+2,3m-\left(-3,2p\right)-12n
The opposite of -2,3m is 2,3m.
1,5m+2,3n+5p+2,3m+3,2p-12n
The opposite of -3,2p is 3,2p.
3,8m+2,3n+5p+3,2p-12n
Combine 1,5m and 2,3m to get 3,8m.
3,8m+2,3n+8,2p-12n
Combine 5p and 3,2p to get 8,2p.
3,8m-9,7n+8,2p
Combine 2,3n and -12n to get -9,7n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}