( 1,4 + x ) ( 1,4 - x ) = ( x - 1,7 ) ( 7,6 - x )
Solve for x
x=1,6
Graph
Share
Copied to clipboard
1,96-x^{2}=\left(x-1,7\right)\left(7,6-x\right)
Consider \left(1,4+x\right)\left(1,4-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1,4.
1,96-x^{2}=9,3x-x^{2}-12,92
Use the distributive property to multiply x-1,7 by 7,6-x and combine like terms.
1,96-x^{2}-9,3x=-x^{2}-12,92
Subtract 9,3x from both sides.
1,96-x^{2}-9,3x+x^{2}=-12,92
Add x^{2} to both sides.
1,96-9,3x=-12,92
Combine -x^{2} and x^{2} to get 0.
-9,3x=-12,92-1,96
Subtract 1,96 from both sides.
-9,3x=-14,88
Subtract 1,96 from -12,92 to get -14,88.
x=\frac{-14,88}{-9,3}
Divide both sides by -9,3.
x=\frac{-1488}{-930}
Expand \frac{-14,88}{-9,3} by multiplying both numerator and the denominator by 100.
x=\frac{8}{5}
Reduce the fraction \frac{-1488}{-930} to lowest terms by extracting and canceling out -186.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}