( 1,2 + 6 ) - ( \frac { 3 } { 4 } : 0,5 + 1 \frac { 1 } { 3 } )
Evaluate
\frac{131}{30}\approx 4,366666667
Factor
\frac{131}{2 \cdot 3 \cdot 5} = 4\frac{11}{30} = 4.366666666666666
Share
Copied to clipboard
7,2-\left(\frac{\frac{3}{4}}{0,5}+\frac{1\times 3+1}{3}\right)
Add 1,2 and 6 to get 7,2.
7,2-\left(\frac{3}{4\times 0,5}+\frac{1\times 3+1}{3}\right)
Express \frac{\frac{3}{4}}{0,5} as a single fraction.
7,2-\left(\frac{3}{2}+\frac{1\times 3+1}{3}\right)
Multiply 4 and 0,5 to get 2.
7,2-\left(\frac{3}{2}+\frac{3+1}{3}\right)
Multiply 1 and 3 to get 3.
7,2-\left(\frac{3}{2}+\frac{4}{3}\right)
Add 3 and 1 to get 4.
7,2-\left(\frac{9}{6}+\frac{8}{6}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{4}{3} to fractions with denominator 6.
7,2-\frac{9+8}{6}
Since \frac{9}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
7,2-\frac{17}{6}
Add 9 and 8 to get 17.
\frac{36}{5}-\frac{17}{6}
Convert decimal number 7,2 to fraction \frac{72}{10}. Reduce the fraction \frac{72}{10} to lowest terms by extracting and canceling out 2.
\frac{216}{30}-\frac{85}{30}
Least common multiple of 5 and 6 is 30. Convert \frac{36}{5} and \frac{17}{6} to fractions with denominator 30.
\frac{216-85}{30}
Since \frac{216}{30} and \frac{85}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{131}{30}
Subtract 85 from 216 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}