Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}-5x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{21}}{2}
Add 25 to -4.
x=\frac{5±\sqrt{21}}{2}
The opposite of -5 is 5.
x=\frac{\sqrt{21}+5}{2}
Now solve the equation x=\frac{5±\sqrt{21}}{2} when ± is plus. Add 5 to \sqrt{21}.
x=\frac{5-\sqrt{21}}{2}
Now solve the equation x=\frac{5±\sqrt{21}}{2} when ± is minus. Subtract \sqrt{21} from 5.
x^{2}-5x+1=\left(x-\frac{\sqrt{21}+5}{2}\right)\left(x-\frac{5-\sqrt{21}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5+\sqrt{21}}{2} for x_{1} and \frac{5-\sqrt{21}}{2} for x_{2}.