Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(0.477-x\right)^{2}=1.1x-x^{2}
Subtract 0.523 from 1 to get 0.477.
0.227529-0.954x+x^{2}=1.1x-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.477-x\right)^{2}.
0.227529-0.954x+x^{2}-1.1x=-x^{2}
Subtract 1.1x from both sides.
0.227529-2.054x+x^{2}=-x^{2}
Combine -0.954x and -1.1x to get -2.054x.
0.227529-2.054x+x^{2}+x^{2}=0
Add x^{2} to both sides.
0.227529-2.054x+2x^{2}=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2.054x+0.227529=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2.054\right)±\sqrt{\left(-2.054\right)^{2}-4\times 2\times 0.227529}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2.054 for b, and 0.227529 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.054\right)±\sqrt{4.218916-4\times 2\times 0.227529}}{2\times 2}
Square -2.054 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.054\right)±\sqrt{4.218916-8\times 0.227529}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2.054\right)±\sqrt{4.218916-1.820232}}{2\times 2}
Multiply -8 times 0.227529.
x=\frac{-\left(-2.054\right)±\sqrt{2.398684}}{2\times 2}
Add 4.218916 to -1.820232 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-2.054\right)±\frac{\sqrt{599671}}{500}}{2\times 2}
Take the square root of 2.398684.
x=\frac{2.054±\frac{\sqrt{599671}}{500}}{2\times 2}
The opposite of -2.054 is 2.054.
x=\frac{2.054±\frac{\sqrt{599671}}{500}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{599671}+1027}{4\times 500}
Now solve the equation x=\frac{2.054±\frac{\sqrt{599671}}{500}}{4} when ± is plus. Add 2.054 to \frac{\sqrt{599671}}{500}.
x=\frac{\sqrt{599671}+1027}{2000}
Divide \frac{1027+\sqrt{599671}}{500} by 4.
x=\frac{1027-\sqrt{599671}}{4\times 500}
Now solve the equation x=\frac{2.054±\frac{\sqrt{599671}}{500}}{4} when ± is minus. Subtract \frac{\sqrt{599671}}{500} from 2.054.
x=\frac{1027-\sqrt{599671}}{2000}
Divide \frac{1027-\sqrt{599671}}{500} by 4.
x=\frac{\sqrt{599671}+1027}{2000} x=\frac{1027-\sqrt{599671}}{2000}
The equation is now solved.
\left(0.477-x\right)^{2}=1.1x-x^{2}
Subtract 0.523 from 1 to get 0.477.
0.227529-0.954x+x^{2}=1.1x-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.477-x\right)^{2}.
0.227529-0.954x+x^{2}-1.1x=-x^{2}
Subtract 1.1x from both sides.
0.227529-2.054x+x^{2}=-x^{2}
Combine -0.954x and -1.1x to get -2.054x.
0.227529-2.054x+x^{2}+x^{2}=0
Add x^{2} to both sides.
0.227529-2.054x+2x^{2}=0
Combine x^{2} and x^{2} to get 2x^{2}.
-2.054x+2x^{2}=-0.227529
Subtract 0.227529 from both sides. Anything subtracted from zero gives its negation.
2x^{2}-2.054x=-0.227529
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-2.054x}{2}=-\frac{0.227529}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2.054}{2}\right)x=-\frac{0.227529}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-1.027x=-\frac{0.227529}{2}
Divide -2.054 by 2.
x^{2}-1.027x=-0.1137645
Divide -0.227529 by 2.
x^{2}-1.027x+\left(-0.5135\right)^{2}=-0.1137645+\left(-0.5135\right)^{2}
Divide -1.027, the coefficient of the x term, by 2 to get -0.5135. Then add the square of -0.5135 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1.027x+0.26368225=-0.1137645+0.26368225
Square -0.5135 by squaring both the numerator and the denominator of the fraction.
x^{2}-1.027x+0.26368225=0.14991775
Add -0.1137645 to 0.26368225 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.5135\right)^{2}=0.14991775
Factor x^{2}-1.027x+0.26368225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.5135\right)^{2}}=\sqrt{0.14991775}
Take the square root of both sides of the equation.
x-0.5135=\frac{\sqrt{599671}}{2000} x-0.5135=-\frac{\sqrt{599671}}{2000}
Simplify.
x=\frac{\sqrt{599671}+1027}{2000} x=\frac{1027-\sqrt{599671}}{2000}
Add 0.5135 to both sides of the equation.