Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-2x+x^{2}=1-0.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
1-2x+x^{2}=0.5
Subtract 0.5 from 1 to get 0.5.
1-2x+x^{2}-0.5=0
Subtract 0.5 from both sides.
0.5-2x+x^{2}=0
Subtract 0.5 from 1 to get 0.5.
x^{2}-2x+\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}}}{2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2}}{2}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{2}}{2}
Add 4 to -2.
x=\frac{2±\sqrt{2}}{2}
The opposite of -2 is 2.
x=\frac{\sqrt{2}+2}{2}
Now solve the equation x=\frac{2±\sqrt{2}}{2} when ± is plus. Add 2 to \sqrt{2}.
x=\frac{\sqrt{2}}{2}+1
Divide 2+\sqrt{2} by 2.
x=\frac{2-\sqrt{2}}{2}
Now solve the equation x=\frac{2±\sqrt{2}}{2} when ± is minus. Subtract \sqrt{2} from 2.
x=-\frac{\sqrt{2}}{2}+1
Divide 2-\sqrt{2} by 2.
x=\frac{\sqrt{2}}{2}+1 x=-\frac{\sqrt{2}}{2}+1
The equation is now solved.
1-2x+x^{2}=1-0.5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
1-2x+x^{2}=0.5
Subtract 0.5 from 1 to get 0.5.
-2x+x^{2}=0.5-1
Subtract 1 from both sides.
-2x+x^{2}=-0.5
Subtract 1 from 0.5 to get -0.5.
x^{2}-2x=-0.5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2x+1=-0.5+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=0.5
Add -0.5 to 1.
\left(x-1\right)^{2}=0.5
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0.5}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{2}}{2} x-1=-\frac{\sqrt{2}}{2}
Simplify.
x=\frac{\sqrt{2}}{2}+1 x=-\frac{\sqrt{2}}{2}+1
Add 1 to both sides of the equation.