Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{yy_{2}+y_{1}^{2}+y_{2}^{2}}-y_{1}}{y_{2}}\text{; }x=\frac{\sqrt{yy_{2}+y_{1}^{2}+y_{2}^{2}}+y_{1}}{y_{2}}\text{, }&y_{2}\neq 0\\x=-\frac{y}{2y_{1}}\text{, }&y_{2}=0\text{ and }y_{1}\neq 0\\x\in \mathrm{C}\text{, }&y_{2}=0\text{ and }y_{1}=0\text{ and }y=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{\sqrt{yy_{2}+y_{1}^{2}+y_{2}^{2}}-y_{1}}{y_{2}}\text{; }x=\frac{\sqrt{yy_{2}+y_{1}^{2}+y_{2}^{2}}+y_{1}}{y_{2}}\text{, }&y_{2}\neq 0\text{ and }\left(y_{2}\geq \frac{\sqrt{y^{2}-4y_{1}^{2}}-y}{2}\text{ or }y_{2}\leq \frac{-\sqrt{y^{2}-4y_{1}^{2}}-y}{2}\text{ or }|y_{1}|\geq \frac{|y|}{2}\right)\\x=-\frac{y}{2y_{1}}\text{, }&y_{2}=0\text{ and }y_{1}\neq 0\\x\in \mathrm{R}\text{, }&y_{2}=0\text{ and }y_{1}=0\text{ and }y=0\end{matrix}\right.
Solve for y
y=y_{2}x^{2}-2xy_{1}-y_{2}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}