Solve for p
p=-1+\frac{5}{x}
x\neq 0
Solve for x
x=\frac{5}{p+1}
p\neq -1
Graph
Share
Copied to clipboard
x-px+5=2x
Use the distributive property to multiply 1-p by x.
-px+5=2x-x
Subtract x from both sides.
-px+5=x
Combine 2x and -x to get x.
-px=x-5
Subtract 5 from both sides.
\left(-x\right)p=x-5
The equation is in standard form.
\frac{\left(-x\right)p}{-x}=\frac{x-5}{-x}
Divide both sides by -x.
p=\frac{x-5}{-x}
Dividing by -x undoes the multiplication by -x.
p=-1+\frac{5}{x}
Divide x-5 by -x.
x-px+5=2x
Use the distributive property to multiply 1-p by x.
x-px+5-2x=0
Subtract 2x from both sides.
-x-px+5=0
Combine x and -2x to get -x.
-x-px=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\left(-1-p\right)x=-5
Combine all terms containing x.
\left(-p-1\right)x=-5
The equation is in standard form.
\frac{\left(-p-1\right)x}{-p-1}=-\frac{5}{-p-1}
Divide both sides by -1-p.
x=-\frac{5}{-p-1}
Dividing by -1-p undoes the multiplication by -1-p.
x=\frac{5}{p+1}
Divide -5 by -1-p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}