Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z=\frac{8+6i}{1-i}
Divide both sides by 1-i.
z=\frac{\left(8+6i\right)\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}
Multiply both numerator and denominator of \frac{8+6i}{1-i} by the complex conjugate of the denominator, 1+i.
z=\frac{\left(8+6i\right)\left(1+i\right)}{1^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(8+6i\right)\left(1+i\right)}{2}
By definition, i^{2} is -1. Calculate the denominator.
z=\frac{8\times 1+8i+6i\times 1+6i^{2}}{2}
Multiply complex numbers 8+6i and 1+i like you multiply binomials.
z=\frac{8\times 1+8i+6i\times 1+6\left(-1\right)}{2}
By definition, i^{2} is -1.
z=\frac{8+8i+6i-6}{2}
Do the multiplications in 8\times 1+8i+6i\times 1+6\left(-1\right).
z=\frac{8-6+\left(8+6\right)i}{2}
Combine the real and imaginary parts in 8+8i+6i-6.
z=\frac{2+14i}{2}
Do the additions in 8-6+\left(8+6\right)i.
z=1+7i
Divide 2+14i by 2 to get 1+7i.