Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
1-6x+9x^{2}+\left(2x-1\right)^{2}=13\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
1-6x+9x^{2}+4x^{2}-4x+1=13\left(x-1\right)\left(x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
1-6x+13x^{2}-4x+1=13\left(x-1\right)\left(x+1\right)
Combine 9x^{2} and 4x^{2} to get 13x^{2}.
1-10x+13x^{2}+1=13\left(x-1\right)\left(x+1\right)
Combine -6x and -4x to get -10x.
2-10x+13x^{2}=13\left(x-1\right)\left(x+1\right)
Add 1 and 1 to get 2.
2-10x+13x^{2}=\left(13x-13\right)\left(x+1\right)
Use the distributive property to multiply 13 by x-1.
2-10x+13x^{2}=13x^{2}-13
Use the distributive property to multiply 13x-13 by x+1 and combine like terms.
2-10x+13x^{2}-13x^{2}=-13
Subtract 13x^{2} from both sides.
2-10x=-13
Combine 13x^{2} and -13x^{2} to get 0.
-10x=-13-2
Subtract 2 from both sides.
-10x=-15
Subtract 2 from -13 to get -15.
x=\frac{-15}{-10}
Divide both sides by -10.
x=\frac{3}{2}
Reduce the fraction \frac{-15}{-10} to lowest terms by extracting and canceling out -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}