Solve for r
r = \frac{\sqrt{185}}{2} \approx 6.800735254
r = -\frac{\sqrt{185}}{2} \approx -6.800735254
Quiz
Polynomial
5 problems similar to:
( 1 - 3 ) ^ { 2 } + ( \frac { 7 } { 2 } + 3 ) ^ { 2 } = r ^ { 2 }
Share
Copied to clipboard
\left(-2\right)^{2}+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Subtract 3 from 1 to get -2.
4+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Calculate -2 to the power of 2 and get 4.
4+\left(\frac{13}{2}\right)^{2}=r^{2}
Add \frac{7}{2} and 3 to get \frac{13}{2}.
4+\frac{169}{4}=r^{2}
Calculate \frac{13}{2} to the power of 2 and get \frac{169}{4}.
\frac{185}{4}=r^{2}
Add 4 and \frac{169}{4} to get \frac{185}{4}.
r^{2}=\frac{185}{4}
Swap sides so that all variable terms are on the left hand side.
r=\frac{\sqrt{185}}{2} r=-\frac{\sqrt{185}}{2}
Take the square root of both sides of the equation.
\left(-2\right)^{2}+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Subtract 3 from 1 to get -2.
4+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Calculate -2 to the power of 2 and get 4.
4+\left(\frac{13}{2}\right)^{2}=r^{2}
Add \frac{7}{2} and 3 to get \frac{13}{2}.
4+\frac{169}{4}=r^{2}
Calculate \frac{13}{2} to the power of 2 and get \frac{169}{4}.
\frac{185}{4}=r^{2}
Add 4 and \frac{169}{4} to get \frac{185}{4}.
r^{2}=\frac{185}{4}
Swap sides so that all variable terms are on the left hand side.
r^{2}-\frac{185}{4}=0
Subtract \frac{185}{4} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{185}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{185}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{185}{4}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{185}}{2}
Multiply -4 times -\frac{185}{4}.
r=\frac{\sqrt{185}}{2}
Now solve the equation r=\frac{0±\sqrt{185}}{2} when ± is plus.
r=-\frac{\sqrt{185}}{2}
Now solve the equation r=\frac{0±\sqrt{185}}{2} when ± is minus.
r=\frac{\sqrt{185}}{2} r=-\frac{\sqrt{185}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}