Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\left(-2\right)^{2}+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Subtract 3 from 1 to get -2.
4+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Calculate -2 to the power of 2 and get 4.
4+\left(\frac{13}{2}\right)^{2}=r^{2}
Add \frac{7}{2} and 3 to get \frac{13}{2}.
4+\frac{169}{4}=r^{2}
Calculate \frac{13}{2} to the power of 2 and get \frac{169}{4}.
\frac{185}{4}=r^{2}
Add 4 and \frac{169}{4} to get \frac{185}{4}.
r^{2}=\frac{185}{4}
Swap sides so that all variable terms are on the left hand side.
r=\frac{\sqrt{185}}{2} r=-\frac{\sqrt{185}}{2}
Take the square root of both sides of the equation.
\left(-2\right)^{2}+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Subtract 3 from 1 to get -2.
4+\left(\frac{7}{2}+3\right)^{2}=r^{2}
Calculate -2 to the power of 2 and get 4.
4+\left(\frac{13}{2}\right)^{2}=r^{2}
Add \frac{7}{2} and 3 to get \frac{13}{2}.
4+\frac{169}{4}=r^{2}
Calculate \frac{13}{2} to the power of 2 and get \frac{169}{4}.
\frac{185}{4}=r^{2}
Add 4 and \frac{169}{4} to get \frac{185}{4}.
r^{2}=\frac{185}{4}
Swap sides so that all variable terms are on the left hand side.
r^{2}-\frac{185}{4}=0
Subtract \frac{185}{4} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{185}{4}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{185}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{185}{4}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{185}}{2}
Multiply -4 times -\frac{185}{4}.
r=\frac{\sqrt{185}}{2}
Now solve the equation r=\frac{0±\sqrt{185}}{2} when ± is plus.
r=-\frac{\sqrt{185}}{2}
Now solve the equation r=\frac{0±\sqrt{185}}{2} when ± is minus.
r=\frac{\sqrt{185}}{2} r=-\frac{\sqrt{185}}{2}
The equation is now solved.