Solve for y
y=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
1-4y+4y^{2}=\left(2y-1\right)\left(2y+7\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2y\right)^{2}.
1-4y+4y^{2}=4y^{2}+12y-7
Use the distributive property to multiply 2y-1 by 2y+7 and combine like terms.
1-4y+4y^{2}-4y^{2}=12y-7
Subtract 4y^{2} from both sides.
1-4y=12y-7
Combine 4y^{2} and -4y^{2} to get 0.
1-4y-12y=-7
Subtract 12y from both sides.
1-16y=-7
Combine -4y and -12y to get -16y.
-16y=-7-1
Subtract 1 from both sides.
-16y=-8
Subtract 1 from -7 to get -8.
y=\frac{-8}{-16}
Divide both sides by -16.
y=\frac{1}{2}
Reduce the fraction \frac{-8}{-16} to lowest terms by extracting and canceling out -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}