Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

1-2i-\frac{1\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator of \frac{1}{2+i} by the complex conjugate of the denominator, 2-i.
1-2i-\frac{1\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1-2i-\frac{1\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
1-2i-\frac{2-i}{5}
Multiply 1 and 2-i to get 2-i.
1-2i+\left(-\frac{2}{5}+\frac{1}{5}i\right)
Divide 2-i by 5 to get \frac{2}{5}-\frac{1}{5}i.
1-\frac{2}{5}+\left(-2+\frac{1}{5}\right)i
Combine the real and imaginary parts in numbers 1-2i and -\frac{2}{5}+\frac{1}{5}i.
\frac{3}{5}-\frac{9}{5}i
Add 1 to -\frac{2}{5}. Add -2 to \frac{1}{5}.
Re(1-2i-\frac{1\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{1}{2+i} by the complex conjugate of the denominator, 2-i.
Re(1-2i-\frac{1\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(1-2i-\frac{1\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(1-2i-\frac{2-i}{5})
Multiply 1 and 2-i to get 2-i.
Re(1-2i+\left(-\frac{2}{5}+\frac{1}{5}i\right))
Divide 2-i by 5 to get \frac{2}{5}-\frac{1}{5}i.
Re(1-\frac{2}{5}+\left(-2+\frac{1}{5}\right)i)
Combine the real and imaginary parts in numbers 1-2i and -\frac{2}{5}+\frac{1}{5}i.
Re(\frac{3}{5}-\frac{9}{5}i)
Add 1 to -\frac{2}{5}. Add -2 to \frac{1}{5}.
\frac{3}{5}
The real part of \frac{3}{5}-\frac{9}{5}i is \frac{3}{5}.