Evaluate
9b^{2}-14b-15
Expand
9b^{2}-14b-15
Quiz
Polynomial
5 problems similar to:
( 1 - 2 b ) ^ { 2 } + 2 ( b - 3 ) ( 2 + 3 b ) - ( b - 2 ) ^ { 2 } =
Share
Copied to clipboard
1-4b+4b^{2}+2\left(b-3\right)\left(2+3b\right)-\left(b-2\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-2b\right)^{2}.
1-4b+4b^{2}+\left(2b-6\right)\left(2+3b\right)-\left(b-2\right)^{2}
Use the distributive property to multiply 2 by b-3.
1-4b+4b^{2}-14b+6b^{2}-12-\left(b-2\right)^{2}
Use the distributive property to multiply 2b-6 by 2+3b and combine like terms.
1-18b+4b^{2}+6b^{2}-12-\left(b-2\right)^{2}
Combine -4b and -14b to get -18b.
1-18b+10b^{2}-12-\left(b-2\right)^{2}
Combine 4b^{2} and 6b^{2} to get 10b^{2}.
-11-18b+10b^{2}-\left(b-2\right)^{2}
Subtract 12 from 1 to get -11.
-11-18b+10b^{2}-\left(b^{2}-4b+4\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(b-2\right)^{2}.
-11-18b+10b^{2}-b^{2}+4b-4
To find the opposite of b^{2}-4b+4, find the opposite of each term.
-11-18b+9b^{2}+4b-4
Combine 10b^{2} and -b^{2} to get 9b^{2}.
-11-14b+9b^{2}-4
Combine -18b and 4b to get -14b.
-15-14b+9b^{2}
Subtract 4 from -11 to get -15.
1-4b+4b^{2}+2\left(b-3\right)\left(2+3b\right)-\left(b-2\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-2b\right)^{2}.
1-4b+4b^{2}+\left(2b-6\right)\left(2+3b\right)-\left(b-2\right)^{2}
Use the distributive property to multiply 2 by b-3.
1-4b+4b^{2}-14b+6b^{2}-12-\left(b-2\right)^{2}
Use the distributive property to multiply 2b-6 by 2+3b and combine like terms.
1-18b+4b^{2}+6b^{2}-12-\left(b-2\right)^{2}
Combine -4b and -14b to get -18b.
1-18b+10b^{2}-12-\left(b-2\right)^{2}
Combine 4b^{2} and 6b^{2} to get 10b^{2}.
-11-18b+10b^{2}-\left(b-2\right)^{2}
Subtract 12 from 1 to get -11.
-11-18b+10b^{2}-\left(b^{2}-4b+4\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(b-2\right)^{2}.
-11-18b+10b^{2}-b^{2}+4b-4
To find the opposite of b^{2}-4b+4, find the opposite of each term.
-11-18b+9b^{2}+4b-4
Combine 10b^{2} and -b^{2} to get 9b^{2}.
-11-14b+9b^{2}-4
Combine -18b and 4b to get -14b.
-15-14b+9b^{2}
Subtract 4 from -11 to get -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}