Evaluate
1
Factor
1
Share
Copied to clipboard
1-\left(2a^{2}\right)^{2}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Consider \left(1-2a^{2}\right)\left(1+2a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-2^{2}\left(a^{2}\right)^{2}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Expand \left(2a^{2}\right)^{2}.
1-2^{2}a^{4}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-4a^{4}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Calculate 2 to the power of 2 and get 4.
1-4a^{4}+25\left(a^{2}\right)^{2}-10a^{2}+1-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(5a^{2}-1\right)^{2}.
1-4a^{4}+25a^{4}-10a^{2}+1-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+21a^{4}-10a^{2}+1-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Combine -4a^{4} and 25a^{4} to get 21a^{4}.
2+21a^{4}-10a^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Add 1 and 1 to get 2.
2+21a^{4}-10a^{2}-2\left(1-8a^{2}+16\left(a^{2}\right)^{2}\right)-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-4a^{2}\right)^{2}.
2+21a^{4}-10a^{2}-2\left(1-8a^{2}+16a^{4}\right)-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2+21a^{4}-10a^{2}-2+16a^{2}-32a^{4}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Use the distributive property to multiply -2 by 1-8a^{2}+16a^{4}.
21a^{4}-10a^{2}+16a^{2}-32a^{4}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Subtract 2 from 2 to get 0.
21a^{4}+6a^{2}-32a^{4}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Combine -10a^{2} and 16a^{2} to get 6a^{2}.
-11a^{4}+6a^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Combine 21a^{4} and -32a^{4} to get -11a^{4}.
-11a^{4}+6a^{2}-\left(-2a^{4}-\left(9\left(a^{2}\right)^{2}-6a^{2}+1\right)\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a^{2}-1\right)^{2}.
-11a^{4}+6a^{2}-\left(-2a^{4}-\left(9a^{4}-6a^{2}+1\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-11a^{4}+6a^{2}-\left(-2a^{4}-9a^{4}+6a^{2}-1\right)
To find the opposite of 9a^{4}-6a^{2}+1, find the opposite of each term.
-11a^{4}+6a^{2}-\left(-11a^{4}+6a^{2}-1\right)
Combine -2a^{4} and -9a^{4} to get -11a^{4}.
-11a^{4}+6a^{2}+11a^{4}-6a^{2}+1
To find the opposite of -11a^{4}+6a^{2}-1, find the opposite of each term.
6a^{2}-6a^{2}+1
Combine -11a^{4} and 11a^{4} to get 0.
1
Combine 6a^{2} and -6a^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}