Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

1-\left(2a^{2}\right)^{2}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Consider \left(1-2a^{2}\right)\left(1+2a^{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-2^{2}\left(a^{2}\right)^{2}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Expand \left(2a^{2}\right)^{2}.
1-2^{2}a^{4}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1-4a^{4}+\left(5a^{2}-1\right)^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Calculate 2 to the power of 2 and get 4.
1-4a^{4}+25\left(a^{2}\right)^{2}-10a^{2}+1-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(5a^{2}-1\right)^{2}.
1-4a^{4}+25a^{4}-10a^{2}+1-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
1+21a^{4}-10a^{2}+1-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Combine -4a^{4} and 25a^{4} to get 21a^{4}.
2+21a^{4}-10a^{2}-2\left(1-4a^{2}\right)^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Add 1 and 1 to get 2.
2+21a^{4}-10a^{2}-2\left(1-8a^{2}+16\left(a^{2}\right)^{2}\right)-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(1-4a^{2}\right)^{2}.
2+21a^{4}-10a^{2}-2\left(1-8a^{2}+16a^{4}\right)-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2+21a^{4}-10a^{2}-2+16a^{2}-32a^{4}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Use the distributive property to multiply -2 by 1-8a^{2}+16a^{4}.
21a^{4}-10a^{2}+16a^{2}-32a^{4}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Subtract 2 from 2 to get 0.
21a^{4}+6a^{2}-32a^{4}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Combine -10a^{2} and 16a^{2} to get 6a^{2}.
-11a^{4}+6a^{2}-\left(-2a^{4}-\left(3a^{2}-1\right)^{2}\right)
Combine 21a^{4} and -32a^{4} to get -11a^{4}.
-11a^{4}+6a^{2}-\left(-2a^{4}-\left(9\left(a^{2}\right)^{2}-6a^{2}+1\right)\right)
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(3a^{2}-1\right)^{2}.
-11a^{4}+6a^{2}-\left(-2a^{4}-\left(9a^{4}-6a^{2}+1\right)\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-11a^{4}+6a^{2}-\left(-2a^{4}-9a^{4}+6a^{2}-1\right)
To find the opposite of 9a^{4}-6a^{2}+1, find the opposite of each term.
-11a^{4}+6a^{2}-\left(-11a^{4}+6a^{2}-1\right)
Combine -2a^{4} and -9a^{4} to get -11a^{4}.
-11a^{4}+6a^{2}+11a^{4}-6a^{2}+1
To find the opposite of -11a^{4}+6a^{2}-1, find the opposite of each term.
6a^{2}-6a^{2}+1
Combine -11a^{4} and 11a^{4} to get 0.
1
Combine 6a^{2} and -6a^{2} to get 0.