Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

1-\left(2\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Consider \left(1-2\sqrt{3}\right)\left(2\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
1-2^{2}\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
1-4\left(\sqrt{3}\right)^{2}+\left(2\sqrt{3}-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
1-4\times 3+\left(2\sqrt{3}-1\right)^{2}
The square of \sqrt{3} is 3.
1-12+\left(2\sqrt{3}-1\right)^{2}
Multiply 4 and 3 to get 12.
-11+\left(2\sqrt{3}-1\right)^{2}
Subtract 12 from 1 to get -11.
-11+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-1\right)^{2}.
-11+4\times 3-4\sqrt{3}+1
The square of \sqrt{3} is 3.
-11+12-4\sqrt{3}+1
Multiply 4 and 3 to get 12.
-11+13-4\sqrt{3}
Add 12 and 1 to get 13.
2-4\sqrt{3}
Add -11 and 13 to get 2.